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1.0 INTRODUCTION
1.1 Significance of the Problem

Advanced materials for aerospace, structural, power and propulsion applications offer
significant advantages in terms of efficiency and cost. This has been the reason for the ever
increasing use of advanced composite materials in recent years. For example, most new or
recently manufactured aircraft include structural parts made of composite materials. Although
practical usage of composite materials in the modemn age originated in aircraft and aerospace
industries, their advantages are now recognized by all major industries. A widespread and
efficient application of composite materials requires detailed and reliable knowledge ¢ their
physical properties and, in turn, of their behavior under applied loads. There are a number of
important technical problems associated with the use of composite materials. One such prob-
lem is the effect of discontinuities (holes and notches) on the strength of composite laminates.
This issue is critical for the determination of the load bearing capacity of composite laminates;
which is directly applicable to the design of composite panels and the location of fastener
holes. Indeed, the manufacture and repair of advanced composite structures have serious
problems connected with the placement of fastener holes. This is especially relevant to com-
posite panel repair, both in the field and at the repair facility. At the present time all depots
are confronted with these problems. The lack of appropriate data has resulted in new and in-
service designs which are often unnecessarily conservative and expensive (both in cost and
turn-around-time). Another related problem conceming composite materials is the issue of
interlaminar response of composite materials which is directly related to delamination and
edge effects in composites. In recent time, delamination has become the most feared failure
mode in laminated composite structures. It can exhibit unstable crack growth, and while
delamination failure itself is not usually a catastrophic event, it can perpetrate such a condi-
tion due to its weakening influence on a component in its resistance to subsequent failure

modes. What had begun in 1970 as somewhat of an academic curiosity turned into a beehive
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of research activity in recent years. Study of delamination is now one of the most prominent
topics in composite mechanics research. Another related issue in the engineering application
of composite materials is the use of numerical methods and, in particular, the finite element
method in linear/nonlinear modeling of composite laminates. The various composite shell and
composite solid elements that are available today are not adequate for advanced applications.
These elements are formulated using one or another form of classical shell theories and
although they provide acceptable results in simple loading conditions, but they are not capable
of predicting accurate structural response for extreme in-use loading conditions of aerospace
systems. One reason for this deficiency has been the lack of powerful theory for composite
laminates. Yet another issue in composite laminates is the development of constitutive rela-
tions which adequately represent the effect of the constituents. In general, our knowledge of
the thermo-mechanical behavior of composite materials and their constitutive relations has
lagged behind advances in such other related areas as increasingly sophisticated computers
and computational methods for solution of complex problems. Proper understanding and
characterization of available and new composite laminates and implementation of their consti-
tutive models in modern (computational) solution procedures is a vital component for safe,
economical and competitive design in aerospace applications. It is believed that for a reliable
structural analysis, the constitutive models of composite materials should be based on sound
thermo-mechanical principles. All the foregoing problems share one common deficiency,
namely, the lack of an adequate and sound theory applicable to composite laminates, a theory
predicated upon solid physical principles and sound mathematical analysis that can account for
the effects of micro-structure, material nonlinearity, geometric nonlinearity, interlaminar

stresses, and complex geometry.

In phase I of this research project the feasibility of the development of such a theory was
studied. The present work is a continuation of the phase I effort to develop a complete

thermo-mechanical theory for composite laminates that exhibits the following characteristics:
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a) It accounts for the effects of micro-structure.

b) It accounts for the effects of geometric nonlinearity.
c) It accounts for the effects of curvature.

d) It accounts for the effects of interlaminar stresses. The three components of the

interlaminar stresses are included in the theory and can be determined numerically.
e) It has a continuum character.

f) It is applicable to both static and dynamic problems.

Due to the use of Cosserat surface theory, we have called the proposed theory Cosserat com-

posite theory.

In the past, several theories have been proposed for the modeling of multilayered plates
and shells. Noor and Burton (1990) assessed the computational models for multilayered com-
posite shells. They presented a list of 400 related publications and they identified the follow-

ing four general approaches for constructing two-dimensional theories for multilayered shells:

1.  method of hypotheses.
2.  method of expansion.
3. asymptotic integration technique.

4. iterative methods and methods of successive corrections.

Some of these approaches were reveiwed in the phase I of this research project. Although
each of these theories has its own advantages, we would like to emphasize that, as a general
assessment, none of these theories possesses the features of Cosserat composite theory collec-
tively. In particular, the interlaminar stresses were not addressed in most of these theories and
their applications were limited to situations where the composite laminate is made of a few

number of layers. These limitations are not present in the Cosserat composite theory.
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The Cosserat composite theory, because of its continuum character, is best suited for
modeling thick composite laminates composed of several (order of hundreds) thin plies.
Furthermore, the interlaminar stresses, which are responsible for delamination failures, are
incorporated into the formulation of the theory in a natural and consistent manner and without
any ad hoc assumptions. Considering these technical issues, the objectives of our research
project were developed. In the following a detailed description of these objectives is

presented.

1.2 Objectives of the Present Research Project

Some technical issues associated with the application of composite laminates were
addressed above. The present research effort is directed toward studying these issues. In this

regard the following objectives have been identified to be addressed in the project:

1. Development of strain measures based on the kinematics of micro- and macro-
'

structures of composite laminates and relating these strain measures to the compo-

site stress and composite stress couple tensors. In particular, development of consti-

tutive relations for elastic behavior of composite laminates in the context of

infinitesimal deformations that can be applicable to any loading condition including

pure bending and pure extension is a part of this task.

2. Further development of the Cosserat composite theory to a thermo-mechanical
theory for multi-constituent, anisotropic laminates. The theory outlined in phase I
of the project is a nonlinear continuum theory which is applicable to composite lam-
inates that are composed of two homogeneous and isotropic constituents within the
context of purely mechanical theory. The generalization of the theory to include the
effect of temperature, anisotropy and in particular stacking sequence/fiber orienta-

tion in fiber reinforced composite laminates will be carried out in this task.
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3. Application of the theory to various practical problems. The micro-macro contin-
uum structure built in the kinematics of Cosserat composite theory provides an ideal
model for the analysis of thick composite laminates composed of a large number of
thin plies. Due to the importance of the interlaminar stresses and edge effects at the
boundaries of composite plates and shells the Cosserat composite theory will be
utilized for the analysis of composite laminates under in-plane and out-of-plane
loading conditions. The existing theories that address the interlaminar stresses are
not manageable when the number of layers exceeds seven or eight (Pagano, 1989).
We commented earlier on the significance of the effect of discontinuity in compo-
site laminates and the urgent need for solutions to such problems. In this regard,
the analysis of an initially flat composite laminate containing a circular hole will be

pursued and the effects of the discontinuity will be studied.

4. Variational formulation of the Cosserat composite theory suitable for finite element

discretization of composite laminates. This part includes the following activities:

e formulation of field equations and constitutive relations in a form suitable for

finite element implementation and derivation of weak forms of these equations.

e linearization of the weak form in terms of linearized strain measures and finite
element interpolation of the representative Cosserat surface and the director

field and approximation of various stress components.

e  numerical implementation of the theory and evaluation of performance of the

proposed finite element model in solving various practical problems.

Our efforts during the year 1991 were directed toward the achievement of these objectives.

The results are summarized next.

BASE




1.3 Present Status of the Project

The results of our research efforts during the last year are presented in section 2.0
through section 7.0 of this report. A summary of the contents of these sections is presented in

the following.

In section 2.0 the kinematics of the micro- and macro-structures were examined and the
relationship between strain measures at micro- and macro-levels were derived. The field
equations for compos e laminates were derived through a direct integration of field equations
of classical continuum mechanics. The linearized kinematic measures were derived in the
context of infinitesimal deformation and the relation of linear strain measures with displace-
ment vector and director displacement vector were obtained. The equations of motion in the

linear theory were derived and were presented for both curved and flat geometries.

Section 3.0 showed the derivation of constitutive relations for composite laminates. A
procedure for deriving the relation between composite quantities (i.e., composite stress tensor
and composite couple stress tensor) and strain measures at macro-level were presented. The
derivation was performed for a bi-constituent composite laminate and the constitutive relations

were expressed in terms of material constants associated with every individual layer.

Section 4.0 presented the complete theory for linear elastic composite laminates. The
relationship between the displacement vector and the director displacement vector was derived
based on the geometrical continuity at interfaces. The field equations were derived in terms
of displacement vector and it was shown that classical continuum theory can be derived from
Cosserat composite theory for the case of a single constituent. The theory was further
simplified for bi-laminate micro-structure composed of isotropic constituents. Finally the con-
stitutive relations for composite stress tensor, composite couple stress tensor and interlaminar
stress vecior were derived in terms of the displacement vector, its gradients and material con-

stants of individual constituents.
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Section 5.0 was the extension of the theory for multi-constituent composites. The micro-
structure or representative element was assumed to be composed of several constituents which
repeated themselves in the layering direction. The development of this section is particularly
suited for fiber reinforced composites where the fiber direction changes in the stacking

sequence of the plies. The theory was simplified for the case of isotropic constituents.

Section 6.0 presented the extension of the theory from a purely mechanical theory to a
thermo-mechanical theory. In this section composite field quantities crresponding to the heat
flux vector, the heat supply and the specific entropy of classical thermo-mechanical theory
were introduced and the equation of local balance of energy and the Clausius-Duhem inequal-

ity were derived in terms of these composite field quaniiiies.

Section 7.0 presented the constitutive relations of linear thermo-eiasticity for composite
laminates. These constitutive relations were derived for the composite stress tensor, compo-
site couple stress tensor, entropy, heat flux vector and heat flux couple vector. The develop-
ments of this section were parallel to those of section 4.0 and a set of coupled thermo-
mechanical field equations in terms of the displacement vector and the temperature were

presented. The continuation of these efforts is briefly discussed in the Future Work section.

We would like to emphasize that because of the very complex nature of composite
materials, any general continuum theory capable of representing various behavioral aspects of
these materials will be complicated. During the course of these developments, two lines of
thought regarding the interpretation of various field quantities of the theory were considered.
Accordingly, some of the earlier developments of the phase I were re-examined and a few
modifications regarding the definition of the field quantities were introduced. This process
required a concentrated effort by all team members, but it had its own rewards. The modeling
and the mathematical issues were clarified and a better understanding of various features of

the theory was achieved.
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The field equations for composite laminates, as presented in section 2.0 and section 6.0,
were derived directly from corresponding field equations of classical continuum mechanics.
In this derivation the existence of a micro-structure in the form of a Cosserat surface was
assumed for the composite laminates. A parallel development of the theory is presented in
Volume II of the report in which the conservation laws of a single micro-structure (i.e., a
Cosserat surface) were integrated across the layering direction of the composite laminate.
This integration process provided the global balance laws for composite laminates and the

governing field equations were derived from these global balance laws.

Some of these developments were presented in the AFOSR contractors meeting on
Mechanics of Materials in October 1991 in Dayton, Ohio. A copy of this presentation is
included in Volume II. Also the draft of a technical paper presenting the field equations of
composite laminates as derived from conservation laws was prepared for publication in the
International Journal of Engineering Science. A copy of this draft report is also included in
Volume II of the present report. The research efforts presented here were carried out by Dr.
M. Panahandeh, Dr. G. R. Ghanimati, Dr. V. Schricker and Dr. M. Mahzoon, a visiting scho-

lar with the University of California, Berkeley.

1.4 Future Work

We are very encouraged with the developments of this project. These developments pro-
vide a framework for the modeling and analysis of various composite laminates and can be
extended to study a wide range of technical issues associated with the application of compo-
site laminates such as nonlinear material behvior, stability analysis, damage growth and failure

mechanisms, to name a few.

The continuation of the present work to achieve the technical objectives of the project, as
outlined in Section 1.2, is planned for this year. In particular, the analysis of composite lam-

inates under in-plane and out-of-plane loadings and the numerical solution of the system of
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equations derived in Section 4.0 is given immediate priority. Theoretical development of the
theory for cylindrical and spherical geometries is underway. The derivation of constitutive
relations for orthotropic materials presenting fiber reinforced plies with various fiber orienta-
tions and different stacking sequences is also a part of this year’s effort. The finite element
formulation of the theory and development of a composite shell element will be followed

immediately after the completion of the theoretical developments.
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2.0 MICRO-MACRO CONTINUUM MODEL OF COMPOSITE LAMINATES

2.1 Kinematics of Micro- and Macro-Structures

Let the points of a region K in a three dimensional Euclidear: space be referred to a fixed
right-handed rectangular Cartesian coordinate system xi (i = 1,2,3) and let ©i (i = 1,2,3) be a gen-
eral convected curvilinear coordinate system defined by the transformation xi = xi(8)). We assume
this transformation is nonsingular in R Furthermore, let & represent the coordinate of a micro-
structure in the layering direction with £ = 0 corresponding to the bottom surface of the micro-
structure. We recall that a convected coordinate system is normally defined in relation to a con-

tinuous body and moves continuously with the body throughout the motion of the body from one

configuration to another.

Throughout this work, all Latin indices (subscripts or superscripts) take the values 1,2,3; all
Greek indices (subscripts or superscripts) take the values 1,2 and the usual summation conven-
tion is employed. We will use a comma for partial differentiation with respect to coordinates 6%
and a superposed dot for material time derivative, i.e., differentiation with respect to time hold-
ing the material coordinates fixed. Also, we use a vertical bar (| ) for covariant differentiation.
In what follows, when there is a possibility of confusion, quantities which represent the same
physical/geometrical concepts will be denoted by the same symbol but with an added asterisk (*)
for classical three dimensional continuum mechanics and no addition for composite laminate
(macro-structure). For example, the mass densities of a body in the contexts of the classical con-
tinuum mechanics, and the composite laminate (macro-structure) will be denoted by p* and p,
respectively.

The micro-macro continuum model of a composite laminate is illustrated in Figures 1 and
2. Figure 1 shows a typical composite laminate (only three micro-structures are shown in this
figure). Figure 2 shows a shell-like micro-structure with its associated coordinates. This micro-

structure is composed of two constitutents and can be generalized for cases of multi-constituent

composites.
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k™ micro stucture

Figure 1

A composite laminate consisting of alternaring
layers of two materials

Figure 2

A SHELL-LIKE MICRO-STRUCTURE (REPRESENTATIVE ELEMENT)
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We begin the development of the kinematical results by assuming that the position vector
of a particle P of a representative element (k™ micro-structure), i.e., p*(8%,03®,E,1) in the

present configuration has the form

p* =r(0%6°®) + £d0%0°®,) (k= L,...,n) 2.1)

where r is the position vector for the surface £ = 0 and d is the director field. 03®), at this
point, is an identifier for the k™ micro-structure. Greek super- or subscripts will assume

values of 1 and 2 only. The dual of (2.1) in a reference configuration is given by

P* = R"(6%,6°®) + £D(6%,6°M) (22)
If the reference configuration is taken to be the initial configuration at time t = 0, we obtain
p (0%8°® E 0) = r(8%,6°%,0) + Ed(6%,0°%),0)
= R(6%,6*®) + £D(8%,6°®) = P*(6%,6°®)£) (2.3)

The velocity vector v* of the three-dimensional shell-like micro-structure at time t is

given by

* ap‘l (eu’GS(k)agat)
v = =
ot

p (0%0’® E (2.4)

where a superposed dot denotes the material time derivative, holding 6% and & fixed. From

(2.1) and (2.4) we obtain

vV=v+iw (2.5)

where

BASE




v=f , w=d (2.6)

The base vectors for the micro- and macro-structures are denoted by g and g;, respec-

tively, and we have

. a‘ . a.
g“='537 , g =

3
2.7

_ 9 =90

Ba = Se 1820 s d§ 150
Using (2.1) and (2.7) we obtain the following relations between g;” and g;
go = 8o +8dg
(2.8)
g =g =d

where ( ), denotes partial differentiation with respect to 6.

By a smoothing assumption we suggest the existence of continuous vector functions

g,(6%,6%) for the macro-structure with the following property

£:(6%,8%), g1 = £,(6%,0°®) , 2.9)

where g(6%,6°®) are defined according to (2.7),. A similar smoothing assumption is also
made for the director d which we like to attach to every point of the macro-structure. Based

on the smoothing assumptions we can write (2.8), as follows

e = 80 + &8 (3% o) (2.10)

where { ) stands for the Christoffel symbol of the second kind and is defined as

. N . ag 3 aga' ag
K ) = oKif3g ilki = L gki(—23 >ej _ Sl
(3% o) = g3 = o g= 2 + =5 - =)
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The following relations can also be derived between the components of metric tensors
g; =8 '8 andg;=g; g
gap = Zop + EL13 ¥ olga + (3 ¥ plawd + B3 ¥ o) 39 play;
8a3 = o3 + 53 ¥ o) &3 @.11)

8;3 =g83x

which after simplification and linearization in terms of £ reduce to

&:B =8ap t E.»gas.s
. 1
Ba3 = 803 + 5 88330 (2.12)
g33 = 833

The determinants of metric tensors g;; and g;; are also related according to the following

relation

- g + §A (2-13)

where

g =deug;) , g=det(gy

811381238331 g11 812 813
A= Ig1; 8n 83 | + [B12382238332
g13 83 833 g13 823 B33

and the final result has been linearized in terms of E.

We recall that the director d is the same as g3 and therefore when referred to the base

vectors g; it has only one non-zero component, namely d* = 1, so we can write
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d=dg , d*=0 , d&’=1
(2.15)

d=gd . d=gz =123

where d; and d' denote the covariant and contravariant components of d referred to g' and g,

respectively. The gradient of the director d may be obtained as follows

d;=gs; = {3 ¥)e=d"g

The vertical bar (1) denotes covariant differentiation with respect to g;;. For convenience we

introduce the notations

A"q =8 d.j = d\l]
(2.17)
l‘j = gi . d.j - dilj
From (2.17) it is clear that
xij = gikxkj (2.18)
Making use of (2.17) and (2.16) we have:
My=di={3';)
(2.19)
A = gadY; = Bjid]
Consider now the velocity vector v which can be written in the form
v = vig, = vig! (2.20)

Again we make a smoothing assumption for the existence of the vector function v(6%,6%) such
that v(6%,8%),g1_gwm = 1(8%,68°®)) after which we can define the gradient of the velocity field

and we have

vi=(vig); = Vg 21)
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We now introduce the notations

Vij = 8i° V§ = Vijj
(2.22)
vij =gt V= vi'j
From (2.22) it is clear that
vi= 3“‘ij
(2.23)

v = vg = vig,
We observe that both A;; and v;; represent the covariant derivative of vector components and

hence transform as components of second order covariant tensors.
We may decompose v;; into its symmetric and skew-symmetric parts, i.c.,
Vij = Vg F Vi = Ny + @y
1
My = Vi) = 5 (Vighvy) = (2:24)
1
@y = Vi = 5 Vivi) = - @
Also in view of (2.6), (2.7); and (2.24); we may express g in the form

£a = Vg = (Myg + Oyo)g*
(2.25)
g3 = d = w = wgt = whg,

The gradient of the director velocity in 8 direction is obtained by writing
W.a=a.u=a;)=mk

= AE gy + Mg = Ak, + ABgp + A25s
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= Aagy + AB(grong)gt + Adwhe,

= [Ag + AEmf+al) + A3whig, (2.26)

The dual of the above expressions in the reference configuration can be written easily by

substituting appropriate capital letters for small letters.

We now introduce relative kinematic measures ¥;; and x;; such that

Yij = ';' (8; — Gy) = 7; (2.27)
K = Ay — Ay (2.28)
where
G;=G; - G (2.29)
A; = Bisil = -%— (Gsij + Gyi3~G;.) (2.30)

Making use of (2.12) and similar expressions for the reference configuration we can

relate relative kinematic measure: yi} of the micro-structure as follows
L4 L l L * 1
Yo = Yo = 5 (gqp'Gap)=-2' [(8ap + & 8ap3) — (Gop + & Gap3)l

=Yap + ‘;‘ &(@ap3 ~ Gaps)

= Yap + -;— &(Kap + Kgg) (2.31)

. . i i 1
Yo3 = M0 = 5 [(8a3 + 3 & 8330) — (Gg3 + 0 € G330
1
= Y3 + -5 E K3y (2.32)
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T3 = Ys3 (2.33)

In obtaining the above results we have noted that

1 1
Aog = [3Bx] = 5 (8308 ~ B3pa) + 5 Bap3
Ay = [30,3] = % 833.0 (2.34)

Kap + Kpa = £ap3 — Gop3

and we have linearized the result in terms of &,
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2.2 Basic Field Equations for Micro- and Macro-Structures

The three-dimensional equations of motion in classical continuum mechanics are

recorded here for the k' representative element (micro-structure) in the present configuration

og =0 (2.35)
T, +p'b'g" 2 =p*v'g'12 (2.36)
g x T =0 237
where
¢ =g 21, T = g2 (2.38)

The argument of all starred functions recorded above is (6%,8*®.Et) and the equations are
written for each and every representative element (k = 1,2,...,n) which is assumed to repeat

itself in the present model.

Now introduce the following quantities for each micro-structure:

Composite Stress Vector T

&
Ti(e%,6°® ) é-g‘: [ T"i(e% 630 £ )k 239)

Composite Stress Couple Vector S*:

&

§%(6%,6°%),) A=El‘ [ ET0%,8%%),E,1)dE (2.40)
2 o
Composite Mass Density p:
i &
pg!? 9_--&: [ p"g""dE (2.41)
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&
P2 - [ gV (@=12) (2.42)

Composite Body Force Density b:

&
pg!?b églz [ p"b"g"12E 2.43)
0

Composite Body Couple Density c:

&
1 e s
pgie - [ p'b'g R (2.44)
0

The quantities on the left-hand side of equations (2.39)-(2.44) are discrete in terms of the vari-
able 63® which are made continuous by smoothing assumptions. The composite mass density

P, in the reference configuration is also defined as follows:

&
p.G2 = EI; | paG™\2dE (2.45)
]

where p, is the mass density of the micro-structure in the reference configuration. Since
p'g’12 = p,G"12, the continuity equation for the macro-structure is readily seen to be
pgln = poG"2 (2.46)

Now consider equation (2.36) and first divide it by &, and then integrate with respect to

¢ from O to &, to obtain the equation for balance of linear momentum for the macro-structure

& & &
1 LT 1T e
g | Toalr g [ S dir g [
! &
=t [ o' + Ewig™ g (2.47)
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Each term in the above equation can be represented in terms of the quantities defined in
(2.39)-(2.44) except the second term which is the difference between interlaminar stresses

above and below the representative element divided by its thickness &, as

*3
'él_ J aTTé_ d§ = gl [T3(0%,6°% D 1) - T*3(6%,6°%),p)] (2.43)
2 o 2

Now we postulate the existence of the continuous vector function o(6%.63,t) whose values at
03 = 03® are the same as interlaminar stresses T*>(0%,8°®),t) and further approximate (2.43)

as the gradient of this function in the 03 direction. With this in mind we write (2.47) as

T + % + pbg'? = pgA(V + z'W) (2.44)

To obtain the equation for balance of director momentum, (2.36) is multiplied by &,

integrated from O to &, and divided by &, to get

& & » &
T lereae i [8 T dt e o [ovyin
1 13
= -g—- I * '1’2(§v + sz)d§ (2.50)

Again the second term in the above equation can be written as

& &
1 aT"3 1 .8 1 .
Lore 9 - Lprnb- Ll (T%E=0-T (2.51)
Rt Ry BTl g [T
As a result we have
§¢, + 0 - T? + pg'?c = pgl%(z!v + W) (2.52)

which is the equation for balance of director momentum.
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Next, we consider (2.37), divide it by &, and integrate with respect to & from E=o to
£=£, and making use of (2.8),, we get

&
L j (8a x T+ g5 xTHdE =0
§2 0
or (2.53)
1 & i &
— [ @+ x T e+ — [dxT? =0
§2 0 §2 °

and substituting from (2.39) and (2.40) we obtain

B XT +dy xS*+dxT>=0 (2.54)

which can also be written as

g xT+dyxS§*=0 (2.55)

This is the balance of moment of momentum for the macro-structure.

Now we proceed to obtain an expression for the specific mechanical energy. Such an

expression for each micro-structure can be written as

pgV% =T v} (2.56)

First, using (2.5) we write this equation as

gV =T (v+ Ew)g + T3 - -a% (v + &w)

=T v +ET wo + T2 - w (2.57)

Dividing (2.57) by &, and integrating with respect to £ from § = 0 to & = &, will result in

1 & 1 & I & 1 %
T [ p'g" 1% dt = Y [ T™dE - v + T, [ ET™dE - wgo + T | TdE - w (2.58)
2 o 2 o 2 o 2 o
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We now define composite specific mechanical energy for the representative element by

&
pgl%e = - [ p'g"2%edE (2.59)
&

From this definition, the equation of continuity and other definitions (2.39) through (2.44) for

composite quantities, (2.58) can be rewritten as

PV =T vy +S8% wo+T3 - w (2.60)

Since v="r, vy =(Fg=Vg=g;and w= d= g3, we can further reduce (2.60) to

pglE =T - g+ 8% wy 2.61)

which is the appropriate expression for the specific mechanical energy of the macro-structure.
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2.3 Field Equations in Component Form

We obtained the following field equations for the macro-structure (balance of mass is not

recorded since it is a scalar equation)

T + % +pg'?b = pgl(v + z!w) (2.62)
§%, + 6 = T3 + pglc = pgl(z!v + 2w) (2.63)
gExT +dyx8*=0 (2.64)

And also the following expression was derived for the specific mechanical energy

pglE =T - g+ 8% w, (2.65)

By referring various vector quantities to the base g; we would like to write the above

equations in component form. First write

T! = g!?2 1iig, (2.66)

o = olg; (2.67)

§* = gl §%g; (2.68)
b=bg , c=odg (2.69)

where 19 and S% are contravariant components of composite stress tensor and composite cou-

ple stress tensor, tespectively, 6' is the interlaminar stress. Now substitute in (2.62) and
obtain
(8" t¥g) o + 5 (%) + pe' Vg = pg 2V + Z'whg;

(8" t)ag; + "2 (;* o) + 0lag; + & (;* 3)ex + pe' bl
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= pg!(V + 2l
or
@2 ™M)+ g2 1% I g} + O3+ 0" () +p g2 D
=p g2 (V + z!w) (2.70)
Equation (2.63) reduces to
(g'? S%g) , + oig; - g1 Tig; + pg'Zcig;

= pg!U 2!V + Zhid)g,

(8'2 8M)5 + g2 8% (o} + 0 - g% P 4 pgl%ci = p g2V + W) 271)

Equation (2.64) can be rewritten as

g x (g"2 tg) + Aisg; x (g1 S%g) = 0

gV%(tl + i, S¥)g; x g; =0 (2.72)

since g # 0, g xg= eijtg" and &g is skew-symmetric we conclude that the quantity in
parentheses in (2.72) must be symmetric in i and j. As a result, the conservation of angular

momentum in component form is the symmetry of TV defined by

Ti & ¢l 4 AL S (2.73)
Tii = T (2.74)

The expression (2.65) for the specific mechanical energy can also be written as
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pg'%e = g'? tg; - g + gV SUg; - wWog;
= g!2(1%g; « g, + $¥w;), + Tlg; - &3)
= gm(t"jgj Vo +Tlg W+ S“jwjla)
= gl’z(‘l:‘"jvjl(,l + ijj + S“jwjm)
We have now the component form of the expression for mechanical power
P £pé = tv;), + Tlw; + $%wj o (2.75)

An alternative form for mechanical energy expression is derived in which the rates of

relative kinematic measures will appear. Using (2.25), and (2.26), we rewrite (2.75) as
P = pé = (M, + ) + Tiw; + SPIAg + Af(Mjg + @) + Adw)]
= (% + SPA®IM, + (1% + SPAS0, + SPiA

+ (2 + MsBw, (2.76)

Recalling (2.73) and using symmetry of TV and skew-symmetry of w;; we can write (2.76) as

P = T, + SPiAjg + Tw; + Ty, Q.77
By (2.25), we have
a8 =Tpa+ Wpa - p° 8a =Tap + Ogp (2.78)
Therefore
80p = By 83 + & * 85 = 2N 2.79)
] —— -
Nap = 3 Bop =Yab (2.80)
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In the last result we have used the definition of Yog from (2.27). By (2.25),, we have
8o " 83 =T + W3
8 84 = Wq
Therefore
B3 =8 B3+ 83 Ba=Taa + Mg + Wy
n3a=g03'(")3a+wu)=2:7a3"(m3a+wa)
Again by (2.25), and (2.27)

. 1 .
“’3=83'83='2'833
'.Y =l° = W
33 2833 3
and by (2.28)

Ajp = Kig
Substituting from (2.80), (2.84), (2.86) and (2.87) in (2.77) we get

P = T%yyg + T2 (23 — (0030 + Wo)) + SPig + THw, + T35 + TSy,

which is simplified to

P= TaBYaB + 2103703 + T33'.Y33 + SﬂJKJB

If symmetry of TY and ¥; is considered we can further simplify (2.89) and obtain

or

e sl

(2.81)

(2.82)

(2.83)

(2.84)

(2.85)

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)
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P = (¢ + ALSoyy, + Sk, (291)
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2.4 General Constitutive Assumption for Elastic Composite

At this point we postulate the existence of specific internal energy in purely mechanical
theory which depends on relative kinematic measures ¥; and Kjq as defined in (2.27) and
(2.28)

V = Y(YKi) (292)

P=py (2.93)

By usual procedures we obtain from (2.91), (2.92) and (2.93)

oy a\v
i = p( - )"u (2.94)
3 IK;q
S% =p ai:,-_ (2.95)
o

Now the composite stress vector T' and the composite couple stress vector S* from (2.66) and

(2.68) will be

ij
§® = pg""(ai"’-)g,- 2.97)
Kja

The coefficient pg¥2 can be replaced by PG by taking advantage of the continuity equa-
tion. Note that by these constitutive relations for T' and S® the balance of moment of

momentum is identically satisfied.
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2.5 Linearized Kinematics

For linearized kinematics let

r(0%,0°® 1) = R(6%,6°®) + eu(6%,6°®),) (2.98)
d(0%,6°® 1) = p(e*,0°%) + £5(6%,6°®),) (2.99)
v=r=eu w=d=¢gb (2.100)

where € is a non-dimensional parameter. The motion of the macro-structure describes
infinitesimal deformation if the magnitude of the gradient of the displacement vector €u and
the magnitude of the director displacement vector €8 are of the order of € << 1 such that in
the following developments we can only retain terms which are linear in €. The base vectors

g; are found from (2.7), as:

8. =R, +eugy (2.101)
g3=d=D+¢d (2.102)

The corresponding vectors in reference configuration are:

Ge=R, , G3=D (2.103)

We now proceed to obtain the relative kinematic measures ¥; and X;o. Using (2.103), and

(2.101) together with the definition of gog and Gog we write

Zap = (Gg + € y) - (Gp + eupg) =Gy + E(Gy " up +ugy - Gp) + O(€h)  (2.104)

where O(e?) denotes terms of order €2 in displacement gradient, where
GG * ll‘a + u‘u ‘ GB = GQ . U"|ng + ujlugj . GB

= Ga : Uy|sgy+ Ga : U3|Bg3 + U.!'ag,y . GB + u3,ag3 . GB
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= uGq * (Gy + euy) + v?13Gg - (D + €8) + u"1o(Gy + €u) - G

+u’ (D + €8) - Gg (2.105)

Retaining terms which are of the order of unity in (2.105) and substituting the result in

(2.104) we find

1 1 1
‘YGB = 3 (gua - Ga.b) = -2— (ualp + UBIG_) + ‘i’ (U?BDQ + ll?aDB) (2-106)

Here covariant differentiation is supposed to be performed with respect to the metric G;; of

the reference configuration and instead of eu we have used u with the same assumptions made

for linearization. Similarly we can write

g3 = (Gy + €uy) - (G3 + €8) = Gos + &Gy * 8 + u,y - Gy) + O

= Gy3 + &8y + u3,) + O(E?) (2.107)

Again using O instead of €3 with the same interpretation we obtain

Yoo =Yoo = 5 @3~ Ged) = 5 Ba+ 1) 2.108)

To find 33 we write
g13 = (G3 + €3) - (G; + €8) = Gy3 + 2685 + O(e?) (2.109)
Ya3 = ";‘ (833 = G33) = &3 (2.110)

As for the measures X;, we proceed as follows

Aop = 8o - dp = (Gyteuy) - (Dg+edg) = Agp + e(uimgj "Dg+Ggy Si,ﬂgj) +0(€d) (2.111)

where:
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Wi " Dp =0 o(Gy+euy) - D+ u’\o(G; +€3) - Dg
= oA + 0 gAsp + O(E)

G, - &pg; = §3Gg - (G, + €uy) + 813G, - (G + €D)
= 8p + 8% gD, + O(e)

Substituting these results in (2.101) and using the definition of x5 we get

Kap = Agg = Agp = WgAjg + 8y p + 8%(gDg
Now we obtain an expression for K3,
Mg =83 dg=(G3+€3) - Dy +8Edy)
Mg = Asq +8(G3 - 84+ 8- Dy) + O(ed)
We simplify cach term separately
Gy 85=G;3" (§4g) = 8,63 * (G, +€uy)
+86G3 - (D + €8) = 8",,D, + 8 ,,D; + O(€)
= 8,4D; + Ofe)
8- Dy = (¥g) - (D¥4Gy) = (B'g) * D3,G;
= AJ@%, + 8y - G,
= AJISYG, + €uy) + %G, + €3)] - D

= O(e) + AZ8D, + A38;D* = AZSD; + O(e)

However, since D® =0 and D° = 1

(2.112)

(2.113)

(2.114)

(2.115)
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'D; = §;D = & (2.116)

Substituting from (2.114), (2.115) and (2.116) in (2.113) and using previous notation for & we

obtain

K3a=x3a_A30=8jlaDj+Ags3=53lu+Ags3 (2.117)

To recapitulate the relative kinematic measures in linear theory are:
1 3 3
Yap = 2 (ug)p + ugjg T U 1aDg + u”1pDg)

1
Y3 = Y30 = ':'," (u31q + Og)

Y3 =83 (2.118)
Kap = Aéllj“x + 50“,3 + 63|BD(!

Kig = &34 + A353
For a composite with iqitially flat plates we can always choose our base vectors G; such that
Gj; = GY = §;; and as a result D® = D, = 0 and if we confine ourselves to small deformations,
then all Christoffel symbols vanish and covariant differentiations reduce to partial

differentiations and equations (2.118) for relative kinematic measures will further reduce to

1
Yop = 3 (Ugp + Ugo)

Y3 = ‘;’ (us o + Oy)

(2.119)
Y33 =83

Kap =08ap » K3 =83q

In writing these relations it has been noted that D, = 0, D3 = 1 and A} = 0.
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It is also desirable to find a relation between g and G, determinants of metric tensors in

present and reference configurations, in the lincar theory. We recall the following relations

g2=gixg 8 . G?=G xGy Gs
g x 82 = (G, +eu) x (G, + €uy)
=G xGy+eu; x Gy + Gy xuy) + O(e?)
[2,8:285] = [G; X Gy + €(uy x G, + G, x uy)] - [G3 + €8] + O(e?)
=G24+ e[G,; X G, - 8+ 1 - Gy X Gy + G3 x Gy - u,y] + Oed)

=G¥2 + eGG?- 5 +u, - G' + G2 - u,] + OE?)

Retaining terms which are of the order of € and using the previous notations for u and o we

get

(-(5;-)“2 =1+8+u%, (2.120)

Now the equation for balance of mass will readily reduce to

Po = p(-é-)”2 =p(1 + 8 +u%y) (2.121)

and since in linear theory displacement vector u and director displacement & satisfy linearity

assumptions we obtain

P =po(l =8 -uq) (2.122)

BASE




-35-
2.6 Linearized Field Equations

We use pertinent results from linear kinematics and usual procedures for linearization to
write the field equations in linear theory. It should be recalled in such analysis that g is
replaced by G, p by p, and Christoffel symbols are calculated with respect to G;;. By omit-
ting the details, the linear version of the equations of motion are recorded here
(G2 1) + GV2 1% () + ok + 0% (i I3} + po G2 bl = p, G2 (iF + ') (2.123)
(G2 8%) , + G2 S% (I} +0 -G 4 p, G2l ==p, G2 (2lii + 27%)  (2.129)

T = 1l + ALSY = T (2.125)

For a composite with initially flat plies further simplification can be made. As men-
tioned earlier, G = 1 and all Christoffel symbols vanish identically. The resulting balance

equations for such a situation will be

4 + O3 + pobl = py(i¥ + 2! (2.126)
§%, + 6l - P + pycl = p, 2!V + 229 @.127)
Ti = 7l = ¢t (2.128)
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3.0 CONSTITUTIVE RELATIONS FOR LINEAR ELASTICITY

For the representative micro-structure let

ta=civg ., a=12 3.1

where

-y cfff 0<E<g
C% = ikl (3.2)
(@) C(‘% gl < é < 52

and c"” (a = 1,2) are material constants in associated layers. Now we proceed to calculate
T' and S defined in (2.39) and (240). First we recall that T" =g"l? tig’,

12 _ 12 A . _ . _ . . . .
g “=g"( +-§- E)’ gy =8+ &, g3 = g; and for brevity we omit the index a in rela-

tions (3.1) and (3.2)

1 & &
T = THdE = g'V2 tig’de
52.2 0 2 ‘! !

& &
l
gz J‘ *12 ukLY d§ = g_ J‘ g *172 (c ,GB-Y + 2C'-‘°3'Ya3 + clj33y33)g dg

0

Substitute from (2.31), (2.32) and (2.33) in the above relations and get

liz

T = _é-; f g2 (cie BYaB + 2c1 By 5 + ¢ 3733)gj‘d§
]

&

' 5%2 J & (B b 4 iy ciedieg et
&

.[ ijkd g*172 g §+—(xaﬁ+xga)-§—fc"ua ‘mgjgd§
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&
+ Kag glz [ ciled g2 g £ g (3.3)

We calculate each integral separately, noting that

. A A
12g, =g [g,+ g(-i g +dy)+ % d.£? (3.4)
g1 gy =gl (g + 2 Egy=g? 1+ 2 Byg, (3.5)
2g 2g

The first integral in (3.3) is

& &
1 i3 - - i * * i o .
» I ciild g*112 g d& = 2’;_12 J’ (citklg*12 g + cOM g*12 g2y gE (3.6)
] [+]

The first term of (3.6) from (3.4) is equal to

&
2 g+ g I "*‘d§+g"2(2 g,+d.,) jt:c &+ = g—’ f &2 citige G

and its second term can be written as, from (3.5),

&
g'? 83(— I cPHE + = — [ EcB¥dE) (3.8)

A 1
g &
Combining (3.7) and (3.8) we rewrite (3.6) as

& & &

g Lo ik A 1 ifkd, g 1 i
g8t ) dE + —— g — [ EcU¥IdE + d,— [ &c™d
| g7 BT [ g dy - [ et

A &
“2 j §2 cikige (3.9)

[

The second integral in (3.3) is
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& &
T [P E gl = [ P g R g (310

The first term of (3.10) from (3.4) is

& &
g g, E" | EcteBdE + g"z(— g+ dy ¢ f g2choPdE

&
A d.{ )
* 22 € [ gemPa 1D

2 o

and its second term from (3.5) is

& A1 & .
£ e [ SR+ g [ HhaY G12

Combining (3.11) and (3.12) we rewrite (3.10) as

% & &
g'? g; RS J‘ EciobdE + —— — 8, J‘ g2 clieBge 4 g12 dy— | E2cioBgE
' & 2g & o &2 3

r =2 q, Ef £3 ¢ g¢ (3.13)
2g1/2 2 A
The third integral in (3.3) is
- gf EcimOgV2 gdE = g2 g — T EIGE + o g o gf a3
&2 % ) V& 2812 7 &
&
rg2d, g— [ g2cmdge + —Al—n— d -- j E3cimge (3.14)

The last result was written by noting the development in (2.13). The results in (3.9), (3.13)
and (3.14) can further be simplified by recalling (2.9);, namely d, = k;gj and using the fol-

lowing definitions and results.
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Define
m= &l/§2 <1 (3.15)
{ a, O0<E<§
=1 a E1<&<&, (3.16)
Then
& gk
1
g—j dg-—[ma1+(—-m)a2] k-1 (3.17)
2 o

Now (3.9) is equal to

2 glme + (1-m)cfX! + % [(me ™ + (ﬁ - m)e})

2
+A., L [mci! +(——m) ‘7"‘]+§—L,{mc +(;12—-m)c§*‘]}

=g'? g,{(l+-§——) f“‘+-§lk;( +E—)mc'7k’

ekl + g‘(zl;m) M(1 +m

+ (1-m)(1 + l:-m (37

+ §1A 14+mr+m? )ci*l]

(3.18)

3g m
(3.13) can also be written as
2
2 gllmefP + L ety Sy A 5L g, (L gty
m g 3 m2

1 ) A §13 ) 1 )
+)., [mc B+(;;-m)c{’“”]+2—gl§-z-[mCP“B'F(?-m)C{pB]}
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A
=g g ((gl + _g_l_)mc;nﬂ 3 Ml > S.L)mcl

2 6g
€1(1-m) €A 1+m+m? B 35 7-y
+ T (l+m+ 3 e 3 [: -m
+2 20 F’ = (L - myjejes)) (3.19)
8 m )

The expression for (3.14) is exactly the same as (3.19) except that (c,B) in (3.19) should be
replaced by (a,3). These results should be incorporated in (3.3) to find an expression for T
Due to the presence of the factor g2 g; in all these expressions and also the equality (2.66),
we can find the constitutive relation for 1. However before doing so we exploit the sym-

metry of ¢ to further simplify (3.3). Since ci® = ciiB® we can write

cij“ﬁtcﬂa = cijﬁ“lcﬂa = ij“BKag (3.20)

Therefore,
. 1 .
M Prgy = = PPlrcgp + Kpa) (3.21)
In view of (3.21), now we write (3.3) as

& &
'l“'=m-g; [ g™ gjd§+x,az—j cile g*12 g* £ dE (3.22)

With the explanation presented above, now we write the constitutive relation for ti:

= ((1+ &-) ik i M+ EL)mc,
_ 1+m &8 ‘51( L o8 Lmim?
+ (-m)(1 + == 2 —)cP + A., (+ * 3 ™y
§1 méy . B 3 &A
+ {(1 + g 2 Cljla + -3- M (1+ E --g—)mc1 a
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§1(1-m) £14 1+m+m? e §27\4 1
* 5= (1+m+ 3% e =5 [;{-m
3 §A
P (— - m)jci™®)x,, (3.23)
8 g m

If we further restrict ourselves to smail deformations of a composite with initially flat

plies, equation (3.23) can be simplified to

v = (mci® + (1-m)ci¥)y, + _§_ {mcjl +

cz"“)xk, (3.24)

Of course in the above equations no distinction should be made between covariant and contra-
variant components of tensors. Using (2.114), equation (3.24) can be written in terms of dis-

placement vector u and director displacement vector 8, hence

1-m

tij = [mcéB + (l-m)c,gﬂ}‘y” + ‘%1' (mc(l) + (2))1(“

= (me{ly + (1-m)c} ,,} 1 (Ugp + Upq) + 2{melll + (1-m)cBs ) (uy o + 8,02

( @2 él (1) l-mz 2
+ {mclﬁ% + (l—m)cij3§]83 + —_— { + m cijhlam (3.25)

Using the symmetry of c;y,’s (3.25) can be written as

t; = (mcly + (1-m)e glugp + (mejos + (I-m)cBsus g

+ (mely + (1-m)c@h)8, + (mefll + (1-m)e 3},

& 1-m?
t5 (mcf) + "(""m_) ciR)8a

= {mefl) + (1-m)e@Ju g + (mef) + (1-m)eiR)8,
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o e 2 (o + ) o5, 326)

[ The same steps can be followed to calculate S* and we record the procedure here KS

& 3

| se=g [ETo= o [0 gt

R
| &2

& &
=g 4 e g d = - [ £y ¢ 2P
° 2 o

% &
L ] * » ]| * 1 * 3 |
+ cPygdE = vy —f:z | &8 Mg dE + xp T jé g2 g"2coibgtdt  (3.27)
o 1

This is basically the same result as (3.22) except that i has been replaced by a and the

integrand has been multiplied by €. The first integral can be reduced to the following by
referring to (3.18)

j l 6g 1 m2

37'3-[!“01 +('r-n—2--m)cz ]+—§g—7\4[m¢1 +(‘r-n7-m)cz 1} (3.28)

Similarly the second integral is simplified and by reference to (3.19) the result is

12 §2 ailp §3A ajf oilp
g g,(—— [mf +(—-m> “J‘“1+—8g—[mc1’ +<;—m)c211

4
M +(——m)c 1+>~,’——-[mc{""‘+(——m)c“"”n

L ek

= gz 12

o E,A
g gil(= IC{""”+M§1(;1;+ ‘ Tog mei™

1 d-m §iA l-m
8g

L&A 1w
Jegi® 4 A £ (A yc ul)g ‘;‘:‘ )o§18) (3.29)
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Again it is seen that because of the factor g gJ and the relation S* = §% g2 g; we can

readily write the constitutive relation for S%, the result is

§% = 51[—' (mefh(1 + i—) + «‘;IM— + El—) okl

1 1-m? | 1-m® 818 L aie, 1-md . 1-mt §iA ki

25 m? 3g e A m? | m 8g 2™ T
54 5A I-m*  §A 1-m*

2((— + —)mcu.lm + —_— _—)mm + + ! m aijlp

+&i 1 513-1( g P )
. 1-m*  §A 1-m®

A ayip

oA im’ * 10g mt Jez T ) x (3.30)

This is the general constitutive relation for S% in linear elasticity. If, as before, we confine

ourselves to small deformations of a composite with initially flat plies (3.30) can be simplified
to

S% = 1 §1 (mcy* ajkl 1m cf“”)‘m + -:l;- §12(mc1"5‘3 + nglﬂ)xm (3.31)

with no distinction between covariant and contravariant tensors. Once written in terms of dis-

placement vector and director displacement and simplified as done in obtaining (3.26) we get

S“’-— §1(mc jﬁk+

: -m .

+% ERme@® + 120 coiBy, o (3.32)
As the results of this section indicate, even in the simplest cases of small deformations of

an initially flat composite (composites with flat plies) higher gradients of displacement vector
become significant and they appear in the constitutive relations for composite stress and com-

posite stress couple. As defined by (3.15) m is of the order of unity, &; and &, are usually

small lengths; however their products with components of cjj; and even the product of their
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higher powers with elastic consiants may be indeed significant quantities, in which case we
get contributions to T; and Sy In the trivial case m = 1, E1=850 we get

Tij = Cijkifkp Sqj = 0 and the equations of linear elasticity are recovered.
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4.0 COMPLETE THEORY FOR LINEAR ELASTIC COMPOSITE LAMINATES

The results of sections (2) and (3) are combined to obtain the complete equations for a
linear elastic composite laminate. However, before doing so we should derive appropriate
expression for p,, z! and z2. As before, we assume that the representative micro-structure is
composed of two homogeneous layers with respective densities p, and p, in the reference

configuration (p, and p, are constants). Recalling equations (2.45) and (2.46) we write

&
l L N
pg'? = p,Gl? = — [ poG"2dE (4.1)
&2 3
Now by (2.13) we have
12 _ 312 _%, 4.2)*%
G GY"(1 + G ) 4.2)

where A is understood to be the sum of two determinants similar to those expressed in (2.14)

except for substituting g;; by G;;. We have

. P 0<E<§ .3
Po=1 p, & <E<f @3)

Substituting (4.2) and (4.3) in (4.1) and using (3.7) we set

€A
=(1+ —)mpl +(1 + é,A)(l—m)pz 4.4)
Of course the composite mass density p is related to p, through the equation (2.122).
We proceed similarly to calculate z! and z2 using their definitions in (2.42)

&
pg'2z! = p GV%2! = é [ EpaG*17dE 4.5)

* Here again the result has been linearized in terms of &.
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&
pgl22 = p GV22 = gl | E2p3G"12dE (4.6)
2 o

After substituting from (4.2) and (4.3) in (4.5) and (4.6) and using (3.17) we get

§1 §1 1-m? &4 1-md
1 22 —_
Po [a+ )mp1 +( —*+3G —~ P2l @.n
3 38.A 4
p022 = g_l [(l + -—g-l—)mpl + ( b + :c‘; l-l? )p:] : (4.8)
m? m

For a composite with initially flat plies (4.4), (4.7) and (4.8) are reduced respectively to

po = mp; + (1-m)p, 4.9)

poz! = % (mp; + L o) (4.10)
2 —_3

Pt = 53‘- (mp; + ‘m‘;‘ %) 4.11)

To formulate the complete theory it is also worthwhile to desive a relation between the
director displacement 8 and the gradient of displacement vector u in the 03-direction. In
order to derive such a relation we enforce the continuity of the position vectors p* and P
between two adjacent micro-structures. Recalling (2.1) and (2.2), we have the following rela-

tions for the k® micro-structure:

p (6% 8’®E 0 = r(8%,6°®,1) + £Ed(8%,0°W),1) (4.12)

P*(6%,6°® k) = R(6%,6°®) + ED(6%,6°) (4.13)

Now in order that position vectors p° and P* be continuous on the common surface between

k™ and (k+1)* micro-structures we should have

P'(6%,0°®E,) = P'(6%,6%%+0) (4.14)
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p’(0%8°® 50 = p"6*,63+*D,0,1) (4.15)
Using (4.12) and (4.13) we can write (4.14) and (4.15) as
R(6%,6°®*D) = R(6%,6°®) + £,D(8%,6%¥) (4.16)

r(6%,0%%+) 1) = r(8%,6°®,1) + £,d(6%,0°®,1) 4.17)

Recalling (2.98) and (2.99) and identifying €u and € with u and & as before we conclude
from (4.16) and (4.17) the following

u(6%,6°%+D 1y = u(6*,03®,1) + £,5(6%,6°%,1) (4.18)

or

56,630 ) = —gl- (u(8%,6°0+D) 1) _ u(e%,6%® )] (4.19)
2

By smoothing assumptions and approximating the right-hand side of equation (4.19) as the

gradient of the displacement vector in the ©° direction we have

_ ou(6%,8*)
5(6%,0%1) = T (4.20)
In component form we have
8 = 8g; = () 3 = v3g; (4.21)
or
8i=llj|3 , 8j=llj|3 (4.22)
For a composite with initially flat plies the equation (4.22) reduces to
81 = Uj.3 (4.23)
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With this simplification, equations (2.119) reduce to

'Y,J = —;‘ (ui‘j + uj.i) (4.24)

Kja = Uja3 (4.25)

Using (4.22), equations (2.121) and (2.125) are also reduced to

Po = P(E)2 = p(l+udy (4.26)

P = poll-td))) 4.27)

The constitutive relations (3.26) and (3.32) for 1;; and Sy for a flat composite are also further

simplified by using (4.23)

2 §
t; = (mell} + (1-m)eu, + (mes + 1-: cifh) —2l Ui a3 (4.28)

and

3
T Badugs  (429)
m

1 1-m? 1
Sej = 3 §ﬂmci§11:} + Ci%}“k.l + 3 §12 {mcgap +

Now we can write the field equations (2.113) and (2.124) in terms of the displacement vector
u and its gradients. It should be recalled that the resulting equations are the linearized field
equation for small deformations of a composite with initially flat plies. These are the counter-
part of the Navier-Cauchy equations in linear elasticity. The appropriate equations for a gen-

eral composite will be derived in later chapters. Using (4.9)-(4.11), (4.23), (4.28) and (4.29)
we write (2.123) and (2.124) as
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—m

{mc&}ﬂ, + (1-m)c ,{,]uhh + {mcajza +

C«gﬁp} = U pia

+ G;3 + [mp; + (1-m)p,lb; = [mp, + (1-m)p,i;

2
+ = Eympy + 12 gy (4.30)
and
1 1-m? 3
3 &1 {medl; + ——¢ A ua""— (medls + —— ciiglugsa
1) & + 10 o
+ 0; — [mefl); + (l‘m)°§1k1}uk.t- — {mcf), -~ c3)ka}uk.03
1 2 .
+ [mpl + (l—m)po]cj = 7 Ql(mpl + p2)uj
1., 3.
+ 3 Sitmp, + P2);3 (4.31)

At this point we may notice that an ordinary continuum (a single material continuum) can be
regarded as the limiting case of a composite laminate when §; = &, — 0. Therefore, we may
anticipate to derive the equations of linear elasticity by letting m = 1 and &; — 0 in equations

(4.30) and (4.31). Doing so, equation (4.30) reduces to

CajiUkja + Cj3 + pbj = pl.lJ (4.32)

where subscript and superscript 1 are dropped because we have only one material. To sim-
plify equation (4.31), first we recall the definition of c in equation (2.44) and notice that by

the mean-value theorem, ¢ — 0 as &, — 0, hence

O'J - C3jk,uk', =0 (433)
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Substituting for o; from (4.33) in (4.32) we get

Cajilicio + Captie 3 + Pb; = P

and combining the first and the second terms we get

cijkluk.li + pbj = pliJ

For a completely isotropic continuum

Cixt = A8y + H(8ydy + 88

where A and 1 are Lame constants and (4.35) reduces to:

pu,d, + (3\.+u.)uj'u + pbl = pl.il

which are the equations of motion for an isotropic media.

(4.34)

(4.35)

(4.36)

(4.37)

and (4.31) to obtain the appropriate equations for displacement vector u. First we do this for

a static problem with no body force. For such a case we let

b=c=u=0

in equations (4.30) and (4.31), hence

2 §
m 1
c(%lﬂ} = Ykpla +0;3=0

1_
(medy + (1-mc§Buy jo + (mefly + =

and
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E..

2L {mc, ujb + &,}uk,a + —‘ (mc ZB + ca)iﬂ)uk B3a

1-m?

&1
+0; - {mctgjlk)l + (l-mké,%}uu Y {mc§jllgu + ¢ }ga]“kw =0

Eliminating o; between these equations, we get

(melly; + (1-m)cBduy o + (mellg + J2’,} = Uy 3pa
g 1) 1—m2 2)
+ {mefl) + (I-m)efuy 5 + = (mc§,ka + i}y o3
—m? 2
- _gl (mc$k, + 1-m c‘%ﬁ,}ukm - -%L {mc{ s + cajﬂp}uhw3 =0 (4.39)

By combining the first and third and also the second and fourth terms of the equation (4.39),

we get

&1
(mefl) + (1-m)effug s + = > (MCije +

1-m?
Sk + — Ciith) Uicjos

1-m

§2
ca;&l}uk,lus -2 {mcé,ZB + c&%&ﬂ’“k,&ﬁ:} =0 (4.40)

——(m&+ 3

This is a fourth order partial differential equation for displacement vector u. Now we apply
this equation to a composite laminate whose micro-structure is composed of two isotropic

layers. For such a case we can write

Cigll(} = Xlﬁijﬁk, + p,(S,kSJ, + 6,’8_']() 4.41)

ljkl )"281]51(1 + p'2(8|k81 + sllsjk) (4.42)

where A; and p; (i = 1,2) are Lame’s constants for the respective layers. Introducing equa-

tions (4.41) and (4.42) in (4.40) we get the following for each term:
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{tncuk} + (l—m)c,gk}}uu = m{xluk.kj + ul(uk.jk tu ll)]
+ (I-m){Aquy y; + Ma(uy i + ;)
= {mQ + 1) + A-m)QAyH) huyy; + (mpy + (1-m)p,)u;

1)) (1-m ) 2
(melh + T ik

CijkaJUkioz = M{A18;8yy + M1 (ByBie + 8160 ) U ia3
(l (1-m?)
(A2 + Ha(Bydie + 3180 }uy o3

= m( }sl Bijﬁpauﬁ'm } + mily (Sikﬁjauk'm + SNSjkuk'm }

+

1-m
¢ - ) A2(8;0pauip,iaa) + l»12(51k5 jalk,io3 + Spadiuy ia3)

a m) (1

= (mA, + A2}ug a3 + (mpy + le jallk ka3

1- 2
+ {my, + ( :) M2} 5003

(mcl, +

1-m
( — Ca,izlukm m{A18qi8 + M (Seuyr + 8oudix) Ui so3

A-m) 5 5 5 Bos By +
—— (RaBosB + MaBeudys + Saudin) Uk o

= mA; (BojUx ko) + MUy (Ug jo3 + Uj003)

1-m? 1-m?
+ ‘('mL) Ay(Beijliy ko3) + (Lom) Ha(ug jo3 + Yj0q3)

=(mA; + (l-mz)
! m

Uk, H2)(Ug ja3 + U 0q3)

2
+ (1-m®)
m

(4.43)

(4.44)

(4.45)
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1—m

(mcdigy + c a0 pass = A8y + K1 (Gyadip + SpBi)) Uy pass

1
m —— (A2didyp + Ha(Boudip + SupBip) Juy poa

= mA18q;Up pa33 + MK (Sialig 33 + Ujqa33)

1- m I-m
t— ) A28qjup,a33 +

uz( i8YaBa33 + Ujaa33)

1 3
= (md, + 2 M)Sa,up Ba33 + (MU + —=— Hr)(Sjpug pa3s + Ujaqas)

Substituting (4.43)-(4.46) in (4.40) we obtain

&1 (l-m ) (1 m2) 5. §1
jou

{md, +

A2)ug a3 + (mpy +

+ (m@A, + ) + (A-m)Ay + po) gy + (mpy + (1-m)py)u;y

& (

)
) (1-m?)

3
1- m) M)Sauk'k‘,_; —— (m|J.1 +

£2
-3 (mhy + = Lo 8 pass

§1 1-m?
=3 (W + 7 U))(OjpUn a3 + Yjan3y) =

Now we introduce the following definitions in the last equation:
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H2) (Ve jo3 + Uja03

(4.46)
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2.12 = ml., + (l-m)M

Hiz = miy + (1-mp,

= 1-m?
hg =mhy +=——=1,

4.47)
1-m?
m

Hi2 =my; + K

= 1-m3
xu = mll + 2 kz
m

= —m3
Hi2 = my, + 2 M2

The result will be
\ &
A1z + Rigdugeyg + Higtjp + —- M2 jo3 + F12Ojalk ka3 + Yjaas))

& ~ 3

- —2- xn Sujuk,m - 7 EIZ(uO-ja?’ + uj-m)

& - & -
=3 M2BaUppazs ~ 5 HixBipUopass + Ujaazs =0 (4.48)
The above equations are counterparts of the classical equations for linear elasto-static prob-
lems in the absence of body forces. We need to write these equations in the expanded form.

The result would be three scalar equations as follows:
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9 aul allz al.l3 Bzul azul azul
Ap + + + + +
(M2 + 112) ol (ael 2 893) Hi2( 22 " 02 " %82
3 92 Ou dup & g2 du duy Jdu
2 Mg ae Ger v 38, T 3 M2 S g6, e, t 3, 3,
&1 9 Pu . & - 2 du  duy Oy
t7 e 393(6912 8622)-_2-112 89,393(891+302+393)
—EI—H 82 (3u1 +8U2)__§l_ 0 (azlll azul)
2 11236,00, 00, & 98, 2 "'238, ‘oe? = 062
2 PX] (au, 3u2) g2 _ 3 (aul . aug)
3 M2 39,007 98, 98, 3 ' 30007 08 @ 902
8. 2 o ™
-—i =0 4.49)
This is the first equation for j = 1 which can further be simplified as
d aul auz 303 azul 62“1 azu,
A, + + + + + +
( 12 le) ael (ael 392 393) le( aelz aezz 8932)
3 = Fus
+ - -A
5 (F12 = Ap) 36,307
élz =, = 83 aul auZ
-— R+ +
3 G+ 36,067 90, ' 36,
glz = 82 azul az“l
- — + =( (450)

The second equation will be
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d al.ll auz 8u3 3202 azllz azllz
G+ b 367 (o, * 362 ¥ 30,0 M1 Ga7 * 37 * o2
3 = Duy
+— (Hpp—-A
> (Hi2 = A2 36,907
glz = = aB BUI auz
3 Rz + Hy2) 36,07 (ael 802)
2_ 2 N, JA
N SpAyA A S @51)
3 712302 002 063
And the third equation is
dJ al.ll au2 allg 32113 82u3 3203
A + + +
et b2 g, S, 302 T ) T M G07 T 07 T 07
& = 92 duy Odu 9 3 uy
+—={A + + T +
> {A12 27 (ael ae2) 1873 36, (aelz 267 )}
& 9 duy Ay g oy
-3 Pl ( 2 NPy 7))
2 007 99, 20 00; 907 0907
§12 = az 8203 82u3
- Hi2 73 3 3)
3 712302 00} 983
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(l + ) o (aul +al12+al13)+ (62u3+82u3+32u3)
12+ Hi2 30, 90, = 38, | 06, H12 7 67 | 067

az aul R 8u2
+= A - ) 267 (ael "%,

= aZ (3203 + 82u3 )=0 4.52)
K12 3632 aelz 822 .

For future reference we will also calculate o; for static problem in the absence of body
forces. The preceding results are used in conjunction with equation (4.31) which has been
simplified for such a case and reproduced before the equation (4.39). From (4.45) and (4.46)
and (4.47) we have

-1 2
(mey + L cBihuse = iz s + Frzltgja + Ujam) (4.52)
1-m’ = -
{mct%lﬂ + m? cgla)“msa = Ry2 Oa;upga3 + F12(0jpua g3 + Uj003) (4.54)

Using (4.36) we get

(mcfl); + A-m)effy)uy = [mAy + (1-m)A218; 8y

+ [mu'l + (l-m)u2][83k8_‘l + 63[8jk]uk,l = x'1283juk,k + Lllz(u3d + Uj'3) (455)

(1-m?) o)

(mefy + — Clika)Ukas = A 1283i0atic o3 + M12(83dig + 830850k o3

= xlzasjua.us + M120i0U3 03 (4.56)

Substituting (4.53)-(4.56) in relation for o; we obtain
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=2 2y 5
05 = ApaBsjlicy + Kzl + Uj3) + S [A12B3580.03 + F1oBiaU3.c0]

_§
= [xzsujuk.ko. + le(“cg)a ,o,a)]

1 = =
-3 &2 [R1284;9p.8a3 + P12(3ipU,pa3 + Ujqa3)] 4.57

Writing down the components of G; separately we get

du; du, §1 %, E,l du, au2 du;
1= Hi(Ggs + 5500+ 5 Pz 36 36, 2 M2 ael 36, " 5%, * %,

§ d (alll au2 E_, 82u1 azul

l l
HIZ ae ael + ae ) H12(aez aezz)

& - # A du

2
3 M2 3938, 36, * 30,

§|2 - az aul allz élz = dJ 32u1 82u1
~ 3 25930, (38, T 36,0 T 3 M2 3, (392 2
1993 1 2 3 00f 003
_ aul al.l3 gl 3203 §1 — — a aul a\lz
—“12(393 + 891)+ (T2 - M) —— %08, 2 (M2 +Hypp) 2, (ael + aez)
& _ d%y N oy 51 & 02 (301 auz)
2 PG+ 55207 3 1+ i) 3555 (5= + 5,
& 9 O Oy -
R TR R @
3u2 a é] 82u3 é] — a aul 302
02 = hialmg + 560) + = @iz~ M) 5= = > Riz+ M) 5o (5= + 33°)
2 12 20, | 98, Hi2 = Ap2 30,99, 5 M2 12 20, 90, = 98,

BASE




-59 -

S = Plo aaeu; 22;:)- -Fi Rz + i) aea;e (g;: + g;z)
_ %12 323 (Zzeulzz N ?:euzzz i (4.59)
O3 = Apgliy + U033 + 52l (Ri20,3) - % Falbaza *+ taaa) = —3-3- Fians
_x,z(ggi + g;z + g;z)+2uu%+-§2lxu 333 (g;I + g;z)
—% 137} 323 (g;l + g;z)__ﬁ_l P2 (%%"’ 329?)
- '%12 ﬁxz(izllzi 2212?')'3
06f 007
0 = llz(wz + %) + A2+ 20y 333 2 iz = Fp) 82 (g;: g;z

The constitutive relations (4.28) and (4.29) for 1;; and Sg; for a flat composite are also

simplified here for a composite laminate whose micro-structure is composed of two isotropic

layers. Using (4.36) first we simplify different terms of the expressions (4.28) and (4.29)

(me + (-m)cEuy, = (mh; + (1-m)A,)8; 8,y
+ (mul + (l—m)uz}(ﬁ,kﬁﬂ + 8“8jl + U,

= Madjupx + W2y + ;)

(4.61)
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where (30.47), , are used.

1~-m? _
(medil; + {om) -: ) chug g = N80;Siun s + H1280ubys + Sadpduy
= AyaBgiuyy + Mg + Ujq)

2
(megh + =0

i uya3 = X128Brabias + F12Budio + iadpuy a3

= A28iug.a3 + F12(8iali 03 + Sl a3)

1—m3 = =
{m‘?&}lﬁ + 2 Cgﬂaluk.ps = R120;0xpuk p3 + H12(Seidip + sabajk)uk.BS

= R120q;upp3 + l-=l12(5jaua.53 + U g3)

Substituting (4.61)-(4.64) in (4.28) and (4.29) we obtain

T = Mafijuiex + Hio(y; + u;)

&

5 [A1285u0.03 + F12Bjalias + Sialjo3)]

Saj = 7‘ M 128gjux i + Hi2(Ugj + Uj0)]

1,,.= =
+3 &2 [%1204;up.83 + H12(8;uq p3 + Uj03)]

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)
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5.0 LINEAR CONSTITUTIVE RELATIONS FOR A MULTI-CONSTITUENT
COMPOSITE

In this section we assume that the representative micro-structure is composed of n layers

with different constituents. For such a micro-structure we let

To) =civg  (@=12,..n) (5.1)
where ¢{J' (@ = 1,...,n) are material constants in the associated layers. As before the variable
§ is designated to change across the micro-structure whose thickness is assumed to be .. It
should be noted that although the micro-structure is composed of n layers, &, is still supposed
to be a very small number. The range of variation of & in the /* layer of the microstructure is
from €., to &, where / = 1,...,n and &, = 0. This convention is adopted due to its agreement
with the special case of a two-layered micro-structure which was studied before. We further

define (n-1) constants m,, . . . ,m,_; according to the following relations

&G=mf, (=1..n-1) (5.2)

As a result of this definition the thickness of the /' layer of the micro-structure is equal to
(mpmy_ )&, where [ = 1,..,n and m, = 0, m;, = 1. The composite stress vector T' and the
composite couple stress S* and other quantities are obviously defined over the whole thick-

ness of the micro-structure. For example we have
. 1 - .
Ti=— [T (5.3)
gn 0

| &
S = T [ & T™dE (5.4)

In order to derive appropriate constitutive relations we make the following definition.

Let
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a=a for § ,<&<& (=1.2,..n) (5.5)

where a;’s are constants and &, = 0 as noted earlier. The function a is piecewise continuous

for € € (0, &,) and we can evaluate the following integral

1o kel kel _
| E I.E'l ol &, ESH k=-D (5.6)

1 “ k 1 1 & k+l_ Kk &n kel kel
T [ &adg = T T M -m{ 16 = o7 o admf-mih) k=D 5D
) Z

where m, = 0 and m, = 1. To simplify the final results in constitutive relations we first notice
that the integrals which appear in these equations are the weighted averages of the constitutive

coefficients. So we adopt the following definition

&
[pars & L [ gkcpange (5.8)
&n 5
which by (5.7) is seen to be equal to
1 n
[)pars — Py gk Ex c&)‘l“(m,“"‘ - mfh (59

We use the same contravariant or covariant index notations for I and c. However, the weight-
ing number k is always written as a superscript in parentheses. Whenever the covariant com-
ponents of constitutive coefficients are used, the layer index (/) is also written as a superscript

in parentheses. Recall (3.22) which for the present situation can be written as

& &
i l 11 . » 1 - * ™
™=ty f et g™ gl dE + Kiag - [ &ciie g"12 grdE (5.10)
n o o

Combining (3.4) and (2.9); we obtain
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g2 g5 =gl (1+ %—:—)(gg + EMig) (5.11)
and (3.5) reads

The first integral in relation (5.10) is simplified using (5.11) and (5.12). We have

1 - 1 = ,
E J’ cilk! g‘l/2 gj d = E: J' (c lﬂkl gB‘ + cﬂkl g"ll2 g;)dE,
0 ]

£, .
=g2 g, L EA | ip 12 33y L LA\ s
g gpan_!(l'*'zg)c dE + g *Bglg,,{g‘”zg)‘: dg

&
rglg % [ _g%)cﬁkldé

n

- & &
T A ik j 1 EA | i
g% glg !(1+ 3 ° dg +Ag E {&(H 2 ° de) G13)

Now we use definition (5.8) to simplify (5.13). The following expression would be the result

1% term in (5.10) = gV? g;( IO 4 ZAg DI lg(l(l)iﬁkl + zAg [@iBky)  (5.14)

The second integral in (5.10) is also simplified similarly

& &
1 L] - l L4 1 » 3 »
_E“__ }' Eciifa g 12 g; dt = E,.— J’ g g’ (clﬂhgp + c‘-"‘“g3)d§

é’ .
= -él-n- ‘! g g1/2 (1 + %%)cialugadg + -gl: j §2 gl/'l a+ %)K& clBhgjdg

4
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&
= g2 gi{- I G+ 2t + A o [ 80+ )
(5.15)

which again by using (5.8) is simplified to

nd : _ o112 o (il . A (e g dy@iBla 33 A 13)iBia
2™ term in (5.10) = gV'2 g;(1(Vbe 4 % | o 4 APl 4 g % 1By (5.16)
Substituting (5.14) and (5.16) in (5.10) we get the following constitutive relation for T
Ti = (IO 4 A qiie 3 S i . B @)kt
2 P 2g K
Dijle , A @ijic 4 33 q@iBla . A 3Bk 112
+ [[Difle 4 %8 (@il 4 pa(1ibla 28 1®%Bly e, }g 12 g (5.17)
The expression inside the bracket is obviously the constitutive relation for tJ. Hence

i = Oy B ik g dqonsk . B jaiibu
™ =1 + 2 1 + Ag(l + 2g MY

y A s . A
+ [I(l)ula + _Z I(Z)l]l(l + xé (1(2)13111 + 2_g, IG)IBI“)]KIG (5.18)

The same steps are followed to derive the constitutive relation for the composite couple

stress S®. By (3.27) we have

& 3
1 : * *
S =y + I § g'1% cUklg dE + kg T | g2 g1 grdE (5.19)
[+]

which can be reduced to the following form by exactly using the same procedure

e = ((Daki ZAg @ikl . (o 4 _zéé_ (Gl

@0 . B 13)aj i1 A e 12
+ [I@aiB s 13 )4([( oy o o I YIB)]KIB} g g (5.20)
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Subsequently the constitutive relation for S would be
o = [Dajkt . A (@aiki 4 3 jp@ont . A (Gran
S¥ = % + M1 2 W

@i . B (3t inG B e
+ [1@Deilp o > I304B 4 AIGrB > 1901819 (5.21)

For small deformations of a composite with initially flat plies, the foregoing equations

are further simplified. The resulting relations are recorded here:

TIJ = I(O)ljk‘-yk ! + [(l)ijk!,(la (5.22)

Saj = I(l)ajkl‘yu + [(z)aJIBKIB (5.23)

with no distinction between contravariant and covariant components. In terms of displace-

ment vector u and its gradients these equations can be written as follows:

= 18 s + IRpurps (5.25)

Using (5.9) the constitutive coefficients are written in the expanded form
©= F 0
-— T -—
ik = :-.};1 Cijkdm, — my_y)

n
=3 & I cfm? - m) (5:26)

n
,S?&—-é,? . cijmy - mely)

To recapitulate, digi’, (r = 1,...,n) are the constitutive coefficients of the micro-structure layers
and m/’s (r = 1,..,n-1) are dimensionless constants related to the thicknesses of different

layers with my = 0 and m, = 1.
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If the micro-structure is composed of n isotropic layers, we can write (5.26) in terms of

the Lame’s constants of various layers. In fact, we have

e = 2BiBu + Wy@udy + 8i€)  r=1,..n (5.27)

For such a case, the relations (5.24) and (5.25) are written in expanded forms as follows

n n
Tij = Uy Dy El Agy(m—my_y) + (u; ;) El Hy(my~m,_;)

&n

n
My (8810703 El A (mZ-m2,) + (3;8,4+8;05;)

n
X Uy 31 Keym?-m2 )]

or
n n gﬂ n )
Tij = Uy O El A Am, + (u;+u;5) El HpAm, + > OUg a3 rf-l ApAm;
n 3 5. T 2 5.28
+ > (u; 439j0+;,63%i0) = HepAmy (5.28)
l n n
Saj = 5 &l BoyBiruys z AmyAm? + (Soy S + SuBjduy z HmAm?]
L e25 puigs T AoAm3 + (ByBig + Seadi)uar I 3
*3 &1 0¢;0mu.83 z @AMy + (Bqdjp + Sepd;uyps = HAm/']
or

1 n n
Saj = "2" én[sujuk.k rEI A'(r)Amr2 + (ua.j+uj.a) !5'1 “(r)Amrzl

1 n n
+ 3 &ilBaupg I ApAm + Gigiaps + a0) I Hiydm)] (5.29)
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where for brevity we have introduced

AmP=mP-mP, r=1..n (5.30)

and in the above relations p = 1,2,3.

In order to obtain the complete field equations for a linear elastic composite whose
micro-structures comprise n layers we should substitute the constitutive relations (5.24) and
(5.25) in the equations of motion (2.123) and (2.124). However before that we should obtain
appropriate expressions for p,, p,z! and p,z2. We assume that the micro-structure layers are
homogeneous with densities pé') (r = 1,...,n) in the reference configuration. Recalling (2.45)

and (2.46) we can write

&
pg'? = p,G!? = — [ psG"VdE (5.31)
[}

1
&n
where

P =pP for E_;<E<E (r=1,.,n)

and (5.32)
& =0

Using (4.2), (5.32) and (5.7) in (5.31) we conclude

£,
1 . n Ag, n
o= [e Foniae Eom e o Booumt 39
o ‘ -

We will proceed similarly to calculate p‘,zl and poz2 using their definitions for the present

situation. By (2.42) we have

&
pgl2z! = p GV2;! = 1 [ EpaG™i2dE (5.34)
n o
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pgl22? = p GV22 = é [ E3poG™12dE (5.35)

Similar to what was done in the derivation of (5.33) we write

S 2
1 * 1 T Agn l'
bt = g [ 8+ SomidE = 5 8 X p“Amr + == L pfAm?  (536)

and

1 3
A
P == [ E¥1+ i)podf; =36 T p{Am] + 5 5 Z pfam!  (537)
z, 2G =l 8G

For a composite with initially flat plies, equations (5.35), (5.36) and (5.37) are reduced

respectively to
n
Po= I pgdAm, (5.38)
r=1
Pzl = — g,, z pPAm? (5.39)
PoZ =% g2 z pPAm3 (5.40)

Now we can substitute (5.24), (5.25), (5.38)-(5.40) and (4.23) in (2.123) and (2.124) to
derive the linear equations of motion for a flat composite. The resulting equations are

recorded below:
() (1 y
Iajz,ukh + Iaj)BuLuﬂs + bJ 151 pé')Am, + Cj_3

= (')Am, + = g,, i3 ): pAm? (5.41)
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I&}ll“k.h + I(%)Bul.am +0; - Iﬁ)x?zuk.z - Iéjlli}ul.&
n n n
+c  pWAm, = + Eji; £ pPAm? + = EZii; T pMAm? (5.42)
V=1 2 L 3 =l

The appropriate differential equation for the displacement vector u is obtained by elim-
inating o; from equations (5.41) and (5.42). For static problems with no body force these

equations reduce to

IRy o + 1ERpYK a3 + Gj3= 0 (5.43)
Iy 1o + 18Uy a3 + 0; — L s — Hipurps = 0 (5.44)

Eliminating G; between these equations, we get

IR i + IS8 Un aps + I + Liipuipss - IR0 103 = IRuyapas = 0

or

ISPy 5 + Likhuy s — It ion — 13 pukapss = 0 (545)
This is a fourth order partial differential equation for the displacement vector u. The constitu-

tive coefficients I (r = 0,1,2) are already written in expanded forms in Egs. (5.26).

For a composite laminate whose micro-structure is composed of n isotropic layers we use

(5.27) and (5.26) to rewrite (5.45). The result is
n n
8;;Ox ik i tfl ApAm, + (8;d;; + 8;8))ui !f-l HryAm,
. ; 2 4 (8,810 + BB 3 2
vy Enl ;UK ip3 El ApAm; + (8yd;p + 8;g0;)uy jp3 rfx HpAm]

1 n n
-3 €l BerjOri o3 r§1 AAm? + (8odys + Sadpduy s z KpAm?]
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1 n ’ n
= 7 Sil8aBipuiapn E ApAm? + (Boudip + Supdpuicapns I pppmy] =0

or
n n n
|-‘i.ji(,fl ApAm, + r§1 HpAmy) + u;; E‘l HpAm,
1 - 2 - 2
*+ 3 Galugips T ApAmy + Giptisgs + Ujpga) 2 Heydmy)
1 5 2 s 2
) EnlBajiy ko3 El ApAm + (Ug o3 + Ujgas) :51 HnAm;’]
1) - 3 - 3
-3 &a [aujuB.aB% 51 ApAm; + (ajﬂua,uﬂ33 + Uj0033) 151 Hpdm;]
n n
= Uiji I Oy + H)dm, + uj; T ppAm,
1 n 2
+3 Enl (W jo3 = Oojlliie3) '51 A = Heyldmy)

1 n n
iy gt%{aajub.aﬁﬁ El Mgy + Heylam? + U 0a33 31 HpAm3) =0 (5.46)

There are three partial differential equations of fourth order for displacement vector u and we

can write them in two separate sets, one for j = v and the other for j = 3. For j = ¥ we obtain
n n
Uig T (hy + A, + uyy T ppAm,
1 5 2
=3 Sty (g — Hehmy

l n n
-3 E2(upp33 ‘1_‘:1 My + He)AM? + uygoas ;:1 RpAm?) =0 (5.47)

and for j = 3 we get
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n n 1 n
Uiz I (o) + B)Amy + uz; T RpAm, + = &y 033 E (Ag) = Hipy)Am?
r=1 r=1 2 r=1

1 n
-3 &2u3 033 151 Hpdm? = 0

(5.48)

For the special case where n = 2 these equations reduce to the equations (4.50)-(4.52) derived

before for a bi-laminatc composite. From (5.44) we can also calculate o;

0; = I§?k)1uk.t - lé}&:uk.za + Ifjllzﬂ“k,BJ - Ig&ﬁ“m&

which for the isotropic case reduces to
n n
0; = Bydyuc) T AgAm, + ByBy + S385)ucs Z HgAm,
§n 2 2 5 2
-5 (SO ik e E] Ay Amy® + (8oxyr + 8By jo Ex HnAm,]
gn D 2 - 2
+ 5 [BaBiguicps Z ApyAm;” + (33p8; + B3 Splug ps Z WgAmc]

1 n n
- = Eal8aiOupkicaps T AgAm? + (Sudip + a0k aps T HeAm.]
3 =1 r=1

The equations (5.50) are written in two separate sets. For j = ¥ we get
n gn n )
Oy = (g3 + U3y T PpAme + =% Uz E (g = AeylAmy
&n : 2 v 2
ey (Vg ay E] Ay + Be)Am” + upgq El H(Amy]

1 n n
-3 g2 (g ay3 :—§1 Ay + Brp)Am? + Uyga3 E] HnAm?]

and tor ) = 3 we obtain

(5.49)

(5.50)

(5.51)
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n n
O3 = Uy k r§l A'(l')Amr + 2“3.3 5‘1 u(r)Amr
&n n En n
= = (Ug3g +U3g9) & "l(r)Amr2 + > Uges X J‘(r)Amrz
2 r=1 2 r=1

L s i 5

For the special case of a laminate with two layer micro-structure (n=2) these equations reduce

to (4.58)-(4.60).
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6.0 DEVELOPMENT OF THERMO-MECHANICAL THEORY FOR COMPOSITE
LAMINATES

In order to develop a thermo-mechanical theory for the composite laminates, we begin by
writing down the local balance of energy and the Clausius-Duhem inequality for the k™
representative micro-structure. First we introduce the following additional five quantities

which we associate with a motion of the micro-structure:
The specific internal energy €” = £°(6%,03%).E,1)
The heat flux vector q° = q"(6%,6°® £ 1)
The heat supply or heat absorption r* = r"(8%,6°®) £,1)

The specific entropy n° = 11°(6%,03%).£ 1) and,

The local temperature 8 = 6°(8%,6°®) £,1) which is assumed to be always positive. The
equation for the local balance of energy — the first law of thermodynamics — can be written

in the following form
pr - p'e" + iy - g =0 (6.1)
where p" is the density of the micro-structure, q** and y,; are defined by
. g = t |
Q@ =a78 . Y= 8y (6.2)

and covariant differentiation is performed with repsect to the metric tensor gi; of the micro-

structure. Recalling the relations

.
8i

]
.

g =8 g (6.3)
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T‘i - gqn_ttijgj-
We can write
J* 1 .» 1 * » * . P
V=5 8 =5 Vitg V&) (6.4)

Using (6.3); and the symmetry of t'J, we can write
i * _ 1 * *ijg * - tij L]
T "Yij—i(".i “Tig +v; T g)

(vi - g AT 4 v g AT = g 12T -y (©63)

N =

As for the divergence of the heat flux vector, we have

. - * l * *|

Introducing the results (6.5) and (6.6) in (6.1), we can write the local energy equation in the

following alternative form

p'r - p'E + g™ 2T - v - (g"12g), 1= 0 6.7)

The energy equation can also be written in terms of the Helmholtz free energy function
defined by

v =¢" -0 (6.8)

The Clausius-Duhem inequality as a statement for second law of thermodynamics has the fol-

lowing local form for the representative micro-structure

* LI . * *112%k
p'eM" - pr" +0'g -1’2(-L9—,‘L)‘k >0 (6.9)

By combining (6.9) and (6.1) and using (6.6) we have the inequality
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p"@ - &) + Tk - é g3 > 0 (6.10)

which in terms of the Helmholtz free energy y* defined in (6.8) becomes

-p"(y" +1"0") + iy - ei kg% > 0 (6.11)

Now for elastic materials the constitutive relations for Helmholtz free energy, the specific

entropy and the stress tensor can be expressed in the following forms

v =180 (6.12)

‘n‘ = - —a—'\.L‘ (6.13)
0"

izt S (6.14)
oY;

where the partial derivative with respect to the symmetric tensor 'yi} is understood to have the

following symmetric form

- -

2 aylj a'in

The constitutive relation for the heat flux vector has the form
0"k =3"(y; 8" (6.15)
and the response function 4"* in the light of the Clausius-Duhem inequality is seen to be res-
tricted by the inequality
90520 (6.16)

With the help of (6.13) and (6.14) the energy equation (6.1) is reduced to the following

form
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p'r —q* -p0™ =0 (6.17)
where we have used the definition (6.8) in order to calculate & in terms of \il‘ and then used
the relations (6.13) and (6.14) to further simplify the energy equation. It should be recalled
that the argument of different functions in the energy equation (6.17) is (8%,6°®),E 1) and this
equation is written for each and every representative element (k = 1,2,..,n) which repeats
itself in our model and n — <. For a bi-laminate representative micro-structure with thick-

ness &, we introduce the following composite quantities. These relations can be generalized

for a multi-constituent micro-structure without any difficulty (see definitions 5.3 and 5.4)

&
eV & o [ pg e
§2 0
(6.18)

&
pgn = [ p'gVI'E dE
[+]

(6.19)

PE M) ié [ p'g " 'EmdE (m =0,1,2) (6.20)

We further assume that the variation of temperature 8~ across the micro-structure is a linear

function of &, hence

8*(0%,6°k) .8 1) = ¢,(6%,6°®,1) + £0,(6%,6°®),p) (6.21)

In order to derive the appropriate form of the energy equation for the composite laminate, first

we write (6.17) in the following form
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g - (g %) = P8O (6.22)

which after using (6.21) reduces to

p gV a" — (2%, = p g VN (9, + EO)) (6.23)

Now divide (6.23) by &, and integrate with respect to & from O to &,, the result is

) & ) & { 13 3
o . *1/2r°d . *172_*a dé - — - *172.*3
¢0 §1 * %10 ¢l 52 x ®]12."
=-§—2ng n'fldg'*"E;J.Pg 27’E dg (6.24)

Each term in the above equation can be written in terms of the composite quantities intro-
duced in (6.18)-(6.20) except the third term which is the difference between the values of

-

g"V2 q"3 above and below the representative element divided by its thickness &,, namely

&2

l » L 1 » *® L *

.é— J’ 1/2q 3)d§ = -g_. [g 1/2q 3(6“,93(k+1),[) -g l/2q 3(90’93&),0]
[} 2

Now we assume the existence of the continuous function h(6%,03,t) which coincides with
q"3(6%,0°®),1) at 8 = 3%, and further approximate the right side of the above equation as the

gradient of this function multiplied by V2 in the ©° direction, i.c., 3(g"2 h)/08>. As a result,
g g

(6.24) can be written as

peg"r - (824" o - 33—3 (g"2 h) = pg'* (@M, + O1111) (6.25)

In writing (6.25) we have also made use of the balance of mass equation.

Next we multiply (6.23) by &, integrate with respect to & from O to &, and divide it by &,

to get
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& £
Lifp'g o ok - &(g“”q‘% (&5 (ngq*s)dg]
E.;Z '}

&
= Elz_ [ P"g" V2 E@, + E0E (6.26)

Using integration by part, the third term on the left-hand side of (6.26) can be written as

& &
1 _a_ V23 = Lieg"2q) - 1ot e s 12 g3
5 153 )dE = F,[E, 10 g, [l =g ) (627)

which in writing the last term we have used (6.19); and the definition of h given above.

Using this result together with the relations (6.18),, (6.19), and (6.20) we can write (6.26) in
the following form
pg'7r - (8% o — 8"2(h—q’) = pg A0, + 611 (6.28)
To determine the appropriate form of constraiits on the composite heat flux vectors, first
we write the Clausius-Duhem inequality (6.16) in the following form
g2 q‘ke'; <0

which by (6.21) reduces to

g% 4 Goa + E01) + 8775701 <0 (6.29)

Next we divide (6.29) by &, and integrate with respect to & from 0 to &, which after using

(6.19) can be written as

g2 %000 + 22 4010 + 82 3°0; <O

or

Q%o + qfP1 o + Q°0; SO (6.30)
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which is the appropriate form of Clausius-Duhem inequality for the elastic composite lam-

inates.

When the rate of heat supply or absorption is zero (r = r! = 0) the energy equations for

the composite reduce to

8" q%g + 32—3 &% h)+p g? @Me + &M =0 (631)
€% qf) o + g2 (h—q%) + p 12 (9N + 017) =0 (6.32)

For small deformations of composites with initially flat plies the energy equations (6.31) and

(6.32) further reduce to

Q2 + —%3- + Pilo + G471 = 0

(6.33)
afx + h = ¢ + p(o,N; + 01 = 0
where obviously no distinction should be made between contravariant and covariant com-

ponents of heat flux vectors.

The derivation of energy equations (6.25)-(6.28) and the Clausius-Duhem inequality
(6.30) for the composite laminates is not atfectad by the number of layers (or constituents) in
the representative micro-structure. The only necessary modification in the case of a mult-
constituent composite is the replacement of &, by &, in definictons (6.18)-(6.20). Here &, is
the thickness of the representative element which is supposed to consist of n layers. Of

course &, is still supposed to be a very small number.

To recapitulate, for a composite whose micro-structure is composed of n layers with a
total thickness of &, we have the following relations for energy balance and the Clausius-

Duhem inequality
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or - g1 2[(g12q%) , + a—z,- €2 )] = p@Tio + 17iy)

pry + @ — h - g12(g"2q®) , = p(dN; + O111)

QCoq + AfP1o + 9, 20

where the composite quantities are defined as follows
q &
pelir=g [P rdS
0
) &
pen = [ oL &
[

3
l * & -
pg M) = T [P g gmdE (m=0,1.2)

(6.34)

(6.35)
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7.0 CONSTITUTIVE RELATIONS FOR LINEAR THERMO-ELASTICITY
For a composite laminate whose micro-structure is composed of n layers with different

linear thermo-elastic constituents, we recall the following constitutive equations for the stress

tensor T, entropy * and the heat flux vector q°

T = ey — ) (7.1)
(PN ey = Sly¥s; + (P C)ey8” (12)
dea) = k8] (7.3)

where ¢y, ch), ¢y and k) (@ = 1,2,...,n) are constants in the associated layers. Moreover,

we have the following symmetries

el = ol = ik = /i (7.4)
chy = cfiy (1.5)

Now we proceed to calculate the appropriate constitutive relations for composite stress
vector T, composite couple stress S*, composite entropy Nm) (M = 0,1,2), and composite heat
flux vectors q' and qf. The contribution of the first part of (7.1) to the constitutive relations
for T' and S* ( and consequently t9 and S%) has already been calculated (see section 5).
Therefore we need to find out the effect of the second part of (7.1) in the constitutive rela-
tions for T and S®. Similar to what was done in section 5 we adopt the following definitions

for the weighted averages of various quantities
. 1 & "
JW5 = — | gkelidE (7.6)
gﬂ [

&
K® = é [ EX(p o)t &)
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&
L0 = - [ et a8

Now recalling (5.11), (5.12), (6.21) and (7.6) we can write

&
C(a) et g-l,z .d&_. = I i g-lfz * d§

O Sy, YT

L
&

&
L * ¢ 1 * 1 * *
I E.Jc(u) 12 g d&= E‘l I (Clsgﬁ +cBgy) g'2 dE
n o

¢1 = *172 , iB..* 1
+ E- I T (c‘BgB + cg3)dE

0

&

= 0,817 g g [ (1+ 2960 + 0, 8 Mg, - j &1+ ié)clﬂda

& 12
. 0274
+ o, g gy - ja+ %%)cﬂdg Lo

2
g { &1 + -g%)c“’dé

, &
+0, 8"\ g _éL [ e+ _‘EA)andg . ‘1’18éﬂ g J- £ + Sé)cﬁdg

% &
1 i i1 ,
=0 g gy [+ S+ J e 5 ooz

% o &
+ 01 8 gl El.._ I 51 + %)c"'dé +4g -g: [ gx+ -g%)clﬂdél

[

— & ol2 g (104 B ij L qdqis . B i
=9, & g0 + 2 S+ 20 WP 4 o0 g )

+ 0, g2 g (I 4 ZAg JDi 4 AJ0@B 4 i_ J3iBy) (19)
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By combining the results (7.9) and (5.17) we can obtain the response function for the
composite stress vector T'. As before if we disregard the factor g!? gj, What remains is the

constitutive relation for i which is recorded below
o = (1O B ikt o dqiBks . D ()it
{ % Aa( % )
+ {I(l)ijla + A [@ijle )'j(I(Z)iBIG + A IG)W“)}KI
2 P 2g “

A v ey A oy
- (JON 4 = i 4 3 (DB 4 2 §(2)iB

— & [JDH 4 = J@ii 4 p (DB 4 — K )iBy) (7.10)

Similar steps are followed to find the constitutive equations for S* and S%. The contribution

of the thermal term is

O Sy T

1 . ‘0‘12 ™ _ 172 . A Nt j 2 A 3
T @ e g =0 lJ“’“J+-2—gJ<’“J+AB(J”°B+—2-§J”“B)}

+ 0, g2 g (IO 4 _2AE 10N 4 pJ (g 4 -% J@aBy) (7.11)

Again combining (7.11) and (5.20) we find the constitutive relation for S®. Dropping the

common factor g'? g; would result in the constitutive relation for S% which is recorded

below.
§% = vy (Dol 4 B (@aiki | 5 iq@ant | B (G

, A . ; A
+ K {IDailB 4 B [BilB 9 )Gy . 2 (@B
sl 2g LM 28 ))

A a4 A
— o (Ve 4 B j@aj | g dgmaed . B 0B
0o { IV 4 %’ + g0 28 )
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— ¢y (JD0i 4 % IO 4 A J(g3 4 fg— J4mB)) (7.12)

The next step is to find the constitutive relaton for the specific entropies Ny, (m =
0,1,2). We calculate the contribution of each term of the relation (7.2) separately. By (6.35),

we have
1 &
pg M =+ [ P™"g Mg
&n 0

&
f cllyrig V2EMdE + é Ig (p"c) oy g 1 2E™dE (7.13)

Since g*V2 = gl2 (1 + -Fﬁ) we can write the first part of (7.13) as
g 22

&
172
f cllyy; &2 EmdE = -%n— | &ma+ Sé)c iyvdE (1.14)

which by (2.31)-(2.34) reduces to

G o &
12
=1 &= [ema +-§é)c i GE Ty, + [%_ [ &= q +-§A>c(a)d§1x,3
= gl/2 (. [J(m)ij 4 A Jm+bify 4 e rp(mDiB _A_](m+2)iB 715
gyl 28 ]+ xigl] 28 1} (7.15)

The second part of (7.13), by (6.21) and (7.7), is written as

1

LS n = .Y
T { (p"c)®” &' E™dE = % ! gm(1 + % )Oa+E01)(P C)ydE

0, guz &

= 25— [ 8+ 30 Ot
172
+ ¢l§g“ J‘ §m+1(1 + L)(p C)(a)d§
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=9, g (K™

A A
+ — Km+D) 4 ¢ 12 (gm+l) . 2 g(m+2)y (716
) } 187 28 } (7.16)

Substituting (7.15) and (7.16) in (7.13) we obtain
N N . A :
D8 My = gV2 (Y, (I + -ng— Jm D)) 4 gh2 (NP 4 e Jms2)iBy

A A
+ ¢° g1/2 (K(m) + z—g K(m+1)) + ¢l g112 (K(m+l) + -Z K(m+2))

or

- i A " . A o
PNy = F(F™ + % I SRNNG (B = Jme2ify

| + 0K 4 2 Kl 4 D+ Zo KD (m=0,12) 01D

We start with (6.35), to find the constitutive relation for qi. Substituting from (7.3) in (6.35),

we get
l
= P
12,41 - 112, %4 — _ _i_ *112 1.ij *
| gq—én!g dg Em!g k0548
i £ 7 E)(k‘ﬁe‘ ki3 3)dE (7.18)
== 1+ 05 + .

\ & { (172 TP T HEIG
L By (6.21)

05 = 0op + 5018 (1.19)

83 =0 (7.20)
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Noting these results we simplify (7.18). Hence

=- g ¢°“ j a +5é)klﬂdg+ ¢”‘ jg(l +-§-A-)k‘5d§

&
9 5A i
— |1+ k'°d 7.21
+%£(2£ g) (7.21)

Using (7.8) we get

: a2 A : o A :
gllz ql = — g1/2 {‘po.B[L(O)IB + _2_g:_ L(I)IB] + ¢1'B[L(l)lﬂ + — L(Z)IB]

| *
+ QIO + 2 L))
| %8
b or
: a A . o A .

’ q =- LOB 4+ —fg- L(l)'B)%ﬁ — (LB 4 —ZE 1_‘(2)133)‘;,1'B

a A ,

- (LOB 4 2_g LDidyg, (7.22)

Finally we use (6.35); to derive the constitutive equation for qf. Similar to the above

development, we write

& &
1 » L 1 * in *
g7 aqf = [ %"t dg =~ —~ [ & g kM0 jdE
gﬂ 0 n o

L e ——
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1/2;
=B [ g+ B )uePo) + k2303
e [ 80+ 3kP0) + k053t

1

&,
7] 172
=-E=Jeas %)k“"(%,a + 0 g)dE - E— [EQ1 + %%)k‘%ldé (7.23)

© G, T

which by (7.8) reduces to

—_qmap, b (e 2 A _aa A e
qiz = (L( 4+ 28 L¢ )GB)%'B - (L( )ap 28 L¢ )GB)¢1.B (L( Ja3 s L¢ )03)4)1 (1.24)

This concludes our derivation of linear thermo-elastic constitutive relations for composite lam-

inates.

For small deformations of a composite with initially fiat plies the foregoing equations are

simplified to the following constitutive relations:

Ty = Euy s + 1ou03 = 100, - 1§00, (7.25)

Sej = 180 + 1&%)[5“1.53 - 150, - J%)% (7.26)

PNy = I + T Du; g3 + K™, + K™Dg,  (m=0,1,2) (7.27)
ai = -Li$o g — L0 5 - LY, (7.28)

qft = - LBy, g — LDy, 5 — LM, (7.29)

The constitutive coefficients 1?9, IV and I® have already been calculated and recorded in
equations (5.26). As for the other constitutive coefficients we use the results of section 5.
Comparing definitions (7.6)-(7.8) with (5.8) and using the results (5.4) and (5.30) we can

write

. 1 noo
9 = 7 8 X oy amt @30
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n
K& = e EK k+1

n I3
L(k)lj - m grll( li'l) Amfk+l

(7.31)

(7.32)

It should be noted that kg) in equation (7.32) are the coefficients of thermal conductivity of

different layers of the representative micro-structure and are not to be confused with the

superscript k which assumes non-negative integer values.

Jf the micro-structure is composed of isotropic layers, the coefficients of thermal stress

c(ig') and thermal conductivity k(‘}) can be written in terms of only one constant for each layer.

For such case we write

C:gr) = ﬁ(r)aij

ki = ki

Taking note of these relations and relations (7.30) and (7.32) we obtain
J; © = 8xJ Z BrAm,
= Emau 2 BpAm”
P == §.?8,, z BpAm?
JC”— ,?8lJ z BrnAm}

n
Ly =8 Z kgAm,

n_1 g 2
L{Y = ) €n9; Z-l kpAm;

(7.33)

(71.34)

(7.35)
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(7.36)

y_ 1 pas 5 3
L = 3 5% Z ke,

Consequently the constitutive equations (7.25)-(7.29) reduce
n n
’tij = 511 rfl (l(,)ukk - [5(,)¢0)Am, + (ui.j + uj.i) rfl u(,)Am,

1 n
+ E gnaij r§1 (x(,)ua'w - B(r)¢1)Am,2

n
+ Ezn‘ (4;,638i0 + Uj,a30i0) Ex HeAm? (1.37)

1 n 5
Saj = 5 &nlB0; El(x(r)uk.k = Bufo)Am? + (ugj + Ujq) = HoAmy)

1 n
*3 E‘"z(suj rf'l (Agyup,ps = Beyon)am?

+ Bipua g3 + Uja3 2 HpAm?) (7.38)

n
Py = r§1 (Beyuii + (P C)ydoAm,

1, oo .
+ 5 & Z Bgupgs + (Pe)hi1Am; (739)

1 n .
My = K3 &n § [Beyuii + (P C)rydolAm?2

1,,0 .
+3 & Z [Byupps + (p C)n¢11Am? (7.40)

1
Mo =3 g2 2 [Beyus; + (P C)yolAm?
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1 - .
+ 7 & I [Buyupgs + (P 0)g0)Am; (7.41)
n l n
Qe =~ Poa El kmAm, - ) End1a 151 k(,)Amfz (7.42)
Q@ =-0 ,51 k(Am, (7.43)
1 n 1 n
Qfx =- 3 gn‘bo.a ;=21 k(r)Arnrz - -3— énz‘pl,a El k(r)Ar“r3 (7.44)

In relation (7.44), a is written as a superscript only for convenience and does not signify the

contravariant position.

The linear equations of motion and balance of energy for a composite with initially flat
plies are derived by substituting (7.25)-(7.29) in (2.123), (2.124) and (6.33). Using the results
(5.41) and (5.42) in conjunction with (7.25) and (7.26) we have the following equations of

motion in linear thermo-elastic theory
n
I + 18 Buiass — IQ00q — IO + b; El P& Am, + o5
ae n (r) l oo n ( ) 2
=U; L pg"Am, + = & U3 I pgAmy (7.45)
=1 2 =1
IG5kt + 1Busaps — 1000 — JP010 + 0; ~ IRy,
n
- Wihu ps + 1§00, + 3Po, + ¢ 151 pIAm,

1 . B 1 . n
) Enl; rfl pAm? + 3 &2 3 le pPAm? (7.46)

The energy equations when the rate of heat supply or absorption is zero are recorded in rela-

tions (6.33) for small deformations of thermo-elastic composites with initially flat plies.
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Substituting the constitutive relations (7.27)-(7.29) in (6.33) we find the following coupled
differential equations for displacement and temperature fields

@I + 0I5 + @I + 0130 g3 + (GKD + 0,KMyp,

: oh
+ (0K + ¢, K)o + i L®000p — Li¥O1ap — L1 4 =0 (1.47)

@oJS" + 0305 + @I + 013N g3 + @KD + ;KD
+ @KP + 0K, + h + Lo, 5 + Lo, 5 + Lo,
- L{B0oop — L&) ap — LY, 4 =0 (7.48)

For static problems in the absence of body force and heat supply, the foregoing equations

are further reduced to

I i + T8 g0 = I 0g — T 1 0 + 0,3 =0 (7.49)

1 0
1§kt + 1Bu1aps = I 000 = 1EP01 o + 05 = Lhuy,

~ jguyps + I§0, + 140, = 0 (7.50)
2~ L 000 - L0108 - LB010 =0 (7.51)
083 af Y0,ap of Y1,af a3 P .
h + L{Pogp + LiPo1 g + LiP0; — L0oap — LA op -~ L1 4 =0 (7.52)

Similar to what was done previously in order to find a relation between the director dis-
placement and the gradient of displacement vector, we enforce the continuity of the tempera-
ture field across two adjacent micro-structures to derive an analogous relation between ¢, and

¢, defined in equation (6.21). In order that the temperature field be continuous on the com-

mon surface between k' and (k+1)** micro-structures we should have
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0°(6%,0°3%* Do) = 0°(9%,63E 1) (7.53)

Now by (6.21) we have
et(ea’e3(k+l)’0’t) - ¢o(9a,93(k+1),t) (754)
8°(0%0°M.E 1) = 9,(0%0°®,) + £ ¢,(6%,6°%),p) (7.55)

Substituting from (7.54) and (7.55) in (7.53) we get

0o(8%, 0%+ 1,0) = 0,(8%.0°M,1) + £,0,(6%.8°M)

or

$,(0%,0°® 1) = E‘ﬂ— (6,(0%,83¢D 1y — ¢ (8%,6°®) 1)) (7.56)

By smoothing assumptions and noting the smallness of &, we approximate the right-hand side

of (7.56) as the gradient of ¢, in the 03 direction. So we obtain

2

%0831 =
Oy ( ) 207

0,(6%,6%,0) (1.57)

This conclusion is used in various field equations. In particular, equation (7.49)-(7.52) reduce

to

IRy 1o + 18bu10p3 — TEPP0a — I 00,05 + 053 =0 (7.58)

18 i + 1Ehurass — I 000 = I 0003 + 0; — iy

- I ps + 150, + 1Pog3 = 0 (1.59)
hs - L&%B%00p ~ LéK00aps - L0003 =0 (7.60)

h+ LiPoog + LiPops + L3003 — Lékdo.ap = LiAoaps — LYoo =0 (7.61)
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Eliminating o; between (7.58) and (7.59), and h between (7.60) and (7.61) we find the follow-
ing coupled differential equations for displacement and temperature fields. Since we are
investigating the static problems in the present derivation the equation for temperature, i.c.,
the equation resulting from the energy equations is independent of the displacement field.

Recalling (5.45), the displacement equation becomes

Iuy s + Tbuyiss — I i — I2pUk ap3s

- 1Q¢q; - Jé"%,is + J&})%.as + Jg)%.un =0 (7.62)

and the temperature equation by (7.60) and (7.61) is

Ligo)q’o.ij + (L§2) — L0353 — LEB®0ap33 = 0 (7.63)

Having determined the displacement and the temperature fields, the interlaminar stresses o;

and heat flux h can be determined from (7.59) and (7.61), respectively. The results are

o; = R + Hjlaui ps — 15kt o — 163JpUsaps

+IP00.0 + I@00.3 — I$P00 — 1P 3 (7.64)

h = L00.ap + L¥d0.aps + L& 0,03 ~ LiDoo — LiDb0.as — L{$03

= L{00.p + Li00.aps + (LsY — L0 a3 — LD o, (7.65)
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